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The question of whether attention-deficit/hyperactivity disorder (ADHD) represents a continuum of
attentional and executive dysfunction or a natural category has yet to be extensively investigated.
Subjective report and neuropsychological data from 437 individuals referred for neuropsychological
evaluation were analyzed using latent class and taxometric analyses (mean above minus below a cut
[MAMBAC], maximum eigenvalue [MAXEIG], and latent mode [LMODE]). Results indicated no
significant evidence for a taxonic representation of ADHD across multiple procedures and indicator sets.
Similarly, there was no evidence that ADHD subtypes represent a qualitative distinction. These findings
may suggest that current diagnostic conceptualizations are inadequate for accurately identifying and
characterizing individuals with problems related to attention and executive dysfunction. Alternatively,
the null findings may have resulted from inadequate indicator selection. A dimensional model may better
facilitate accurate identification of individuals at risk for functional impairment.
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The current diagnostic conceptualization of attention-deficit/
hyperactivity disorder (ADHD) requires the presence of at least six
of nine symptoms of inattention and/or hyperactivity/impulsivity
with onset of symptoms prior to age 7 (American Psychiatric
Association, 1994). The diagnostic algorithm results in three pos-
sible diagnostic subtypes, inattentive (ADHD–I), hyperactive/im-
pulsive (ADHD–H/I), and combined type (ADHD–C), depending
on whether individuals meet criteria in one or both symptom sets.
These criteria have changed somewhat from the third to the fourth
edition of the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM–III and DSM–IV; American Psychiatric Association,
1980, 1994), with varying complexity of the diagnostic criteria.
However, all of the diagnostic formulations of ADHD have fo-
cused on the identification of a categorical syndrome, as have all
formulations of mental disorders (Adams & Cassidy, 1993; Car-
son, 1991). This reflects a general bias of DSM formulations
toward the medical model of diagnostic classification (Widiger &
Clark, 2000). Alternatively, other researchers have discussed the
general bias of psychologists toward a dimensional structure for all

psychopathology (Dahlstrom, 1995; Meehl, 1995). Increasingly,
empirical studies have attempted to test these opposing conten-
tions.

ADHD Diagnosis

Barkley’s (1997, 1998) model of ADHD posits that ADHD
results in a core deficit in behavioral inhibition that results from
deficits in working memory, regulation of affect, internalization of
speech, and reconstitution. Multiple studies have supported this
model, with the most consistent findings being deficits in executive
cognitive functions (Frazier, Demaree, & Youngstrom, 2004;
Woods, Lovejoy, & Ball, 2002). However, because these studies
have relied on existing diagnostic criteria, it is not clear whether
the identified deficits result from differences between distinct
categories or taxa (i.e., ADHD vs. non-ADHD) or are merely
descriptions of the extreme ends of a continuum of dysfunction. It
should also be noted that Barkley’s model is applicable only to the
hyperactive/impulsive and combined subtypes, as the inattentive
type (or at least a subset of individuals receiving this diagnosis) is
now thought by some researchers to represent a different disorder
(Milich, Balentine, & Lynam, 2001).

Neuropsychological studies have provided some support for
ADHD subtype distinctions, with significant differences reported
between ADHD–C and ADHD–I on measures of response control
and attention/working memory (Hinshaw, Carte, Sami, Treuting,
& Zupan, 2002; Lockwood, Marcotte, & Stern, 2001). However,
some studies have failed to find significant neuropsychological
differences in spite of robust differences in demographic, psychi-
atric, social functioning, and school functioning variables
(Chhabildas, Pennington, & Willcutt, 2001; Faraone, Biederman,
Weber, & Russell, 1998). When significant differences have been
found, they have tended to be small effects, resulting in modest
individual classification (Hinshaw et al., 2002). Even if significant
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neuropsychological and psychosocial differentiation are assumed,
the question remains whether these differences result from descrip-
tions of the ends of a continuum or continua or whether they result
from ADHD subtypes representing discrete categories.

Milich and colleagues (2001) argued that ADHD subtypes are
distinct, unrelated entities. Their conclusions were based on an
extensive review of the history of the diagnosis as well as cluster
analytic studies that differentiated between children. A recent
study using latent class analysis found strong support for two
distinct categories, inattention only and inattention with hyperac-
tivity/impulsivity, consistent with those two of the three DSM–IV
subtypes (Neuman et al., 1999). However, cluster analysis is not
able to accurately determine whether data result from a latent
taxonic structure or a latent dimensional structure (Waller &
Meehl, 1998), and latent class analysis may be more useful for
distinguishing between multiple latent categories, with coherent
kinetic methods preferred for examining the taxonic hypothesis
(Schmidt, Kotov, & Joiner, 2004).

On the basis of the above cited findings and limitations of
previously applied methodology, several researchers have indi-
cated that the actual latent status of ADHD subtypes has yet to be
determined (Barkley, 2001; Hinshaw, 2001; Lahey, 2001). In fact,
there are multiple possibilities regarding the actual latent structure
of ADHD subtypes, including multiple latent categories, multiple
dimensions, mixtures of dimensions and categories, and nesting of
dimensional structure within latent categories. The primary pur-
pose of the present study was to examine whether any latent
categories composed of individuals with attention and/or hyperac-
tivity/impulsivity problems exist. Additionally, we examine
whether a subset of individuals with inattention, but not hyperac-
tivity, will emerge as a distinct category relative to individuals
with both symptom clusters.

Importance of Latent Structure Identification

The taxonic distinction is not merely academic. Matching the
assessment method to the latent structure of a disorder increases
the reliability and validity of assessment (for an extended discus-
sion of this issue, see J. Ruscio & Ruscio, 2004). Accurate iden-
tification of the latent structure of a disorder is also likely to
facilitate research. Studies can implement a more appropriate
design (group comparisons vs. correlational designs or quantitative
trait genetic models), maximizing power. Also, researchers can
focus studies on the most likely etiological pattern. Some research-
ers have argued that taxonicity is more suggestive of all-or-none
causes, whereas dimensionality is more consistent with multiple
additive or graded etiologies (Haslam, 1997). Finally, taxometric
analyses can help identify moderators of treatment outcome (see
Beauchaine, 2003). For example, if a subset of individuals with
significant inattention represents an ADHD taxon, these individu-
als may differentially benefit from particular treatment options
(i.e., medication vs. cognitive–behavioral treatment). Thus, iden-
tifying the latent structure of ADHD is likely to significantly
enhance the interpretation of past research using group designs and
to facilitate future research and clinical work.

Taxometric Analysis of ADHD

A recent taxometric investigation found that ADHD was best
characterized as representing a continuum (Haslam et al., 2006).

However, this study examined only one indicator set with three
variables, each representing a heterogeneous composite of symp-
toms from the DSM–IV ADHD symptom clusters. Thus, because
of the limited indicators included in this study, an ADHD taxon
may have been missed.

Beauchaine (2003) suggested that candidate indicators of an
ADHD taxon be expanded beyond DSM criteria. Cognitive test
data are a promising source of indicators. Neuropsychological test
scores have been shown to differentiate between ADHD subjects
and normal controls (Frazier et al., 2004). The magnitude of effects
sizes for neuropsychological tests when comparing ADHD and
non-ADHD groups typically ranges from medium to large, with
the largest effect sizes occurring for measures of academic skills,
sustained attention and impulsivity, and intellectual measures.
Additionally, neuropsychological test scores provide direct indices
of the two primary symptom clusters, inattention and impulsivity/
hyperactivity. Thus, although neuropsychological measures do not
directly examine the DSM criteria, they do assess the primary
symptoms of ADHD, and they directly measure some of the core
deficits thought to underlie the condition (Barkley, 1998).

Taxometric analyses have typically focused on subjective report
data (see Schmidt et al., 2004, for review). However, research has
demonstrated that observers’ expectations can induce pseudotaxo-
nicity into rating scale data (Beauchaine & Waters, 2003). Sup-
plementing subjective report data with objective test data should
provide an additional consistency test to ensure that taxonicity is
not inferred because of rater biases. The present study examined
the taxonic conjecture by including indicator sets with subjective
and objective test data.

Hypotheses

With the paucity of previous empirical work regarding the latent
structure of ADHD and the large number of possibilities regarding
the latent structure of ADHD (dimensional, one latent category,
multiple latent categories, one or more latent categories that each
represent a continuum, etc.), we found it difficult to generate
specific predictions. In the interest of making a strong prediction,
and with the hopes of spurring additional research, we expected
taxonic results across all of the indicator sets examined. This
expectation is based on prior findings of ADHD clusters or classes
(for a review, see Milich et al., 2001; Neuman et al., 1999) and the
current categorical diagnostic conceptualization. The evidence of
specific structural brain abnormalities was also considered in gen-
erating predictions (Castellanos et al., 1996, 2001), although it
should be recognized that these findings could also be consistent
with comparisons of the extreme ends of a continuum. Because
previous evidence is not particularly strong and current classifica-
tion systems are based largely on historical considerations, the
above predictions should be viewed as strictly a starting point for
research in this area.

No predictions were made regarding the composition of the
taxon group(s). Many researchers might argue that the individuals
who receive clinical diagnoses of ADHD–I represent a distinct
category (Milich et al., 2001); however, we could also argue that
individuals with both inattention and hyperactivity/impulsivity
represent a distinct group. This is based on the relatively uncon-
troversial clinical observation that individuals with acquired brain
injury often show symptoms of inattention and impulsivity that are
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categorically distinct from normal variations of inattention and
impulsivity. Thus, the possibility that a developmentally based
version of impulsivity/hyperactivity, analogous to the acquired
version associated with head injury, should not be dismissed
(Amor et al., 2005). For example, a subset of individuals with
ADHD–C may show qualitatively distinct inattention and impul-
sivity resulting from selective dysfunction of ventromedial and/or
lateral orbitofrontal regions due to genetic and/or early environ-
mental factors, such as perinatal bradycardia or mild fetal alcohol
syndrome.

A secondary purpose of the present study was to examine
whether ADHD–I represents a distinct category relative to
ADHD–C. We expected that a subset of individuals with the
clinical diagnosis of ADHD–I would be distinguishable from
individuals with ADHD–C and individuals with ADHD–I who are
simply subthreshold for hyperactivity/impulsivity symptoms based
on previous suggestions of a latent category of individuals with
inattention only (Hinshaw, 2001).

Method

Participants

Data for the present study were obtained from a deidentified
patient registry that has been reviewed and approved by the Insti-
tutional Review Board at the Cleveland Clinic Foundation. The
database consisted of neuropsychological test data from children,
adolescents, and adults referred for neuropsychological assessment
at the Cleveland Clinic Foundation Section of Neuropsychology.
The patient population of this clinic represents a diverse group of
individuals drawn from a large metropolitan area and the surround-
ing suburbs. Approximately 60% of referrals come from other
hospital departments (primarily neurology, psychiatry, and psy-
chology) and 40% of referrals come from community sources
(typically pediatricians) or represent self-referrals. Individuals
with neurological disorders (e.g., seizure disorders, tumors, head
injuries, infectious disorders) and full-scale IQs below 70 were
excluded from the sample. These exclusion criteria are consistent
with the DSM–IV diagnostic guidelines that the symptoms of
ADHD cannot be better explained by other preexisting neurode-
velopmental disorders or mental retardation (American Psychiatric
Association, 1994, pp. 83–85) and also follow recommendations

that taxometric analyses not include extreme cases whose perfor-
mance on indicators would make them outliers (Schmidt, Kotov, &
Joiner, 2004).

The final sample consisted of 437 individuals (age: M � 14.96
years, SD � 9.70, range � 5–66; 61% male; 87% right-handed).
This sample represents all of the individuals (children and adults)
referred to this clinic for evaluation of attention, mood, and/or
behavior problems during a 4-year period (2000–2004). All indi-
viduals referred during this period were administered a compre-
hensive neuropsychological assessment battery. Clinical diagnoses
of ADHD were made on the basis of the neuropsychological
evaluation using DSM–IV criteria and relied heavily on clinical
interview, neuropsychological tests of attention and executive
function, and, for children, parent report of ADHD symptoms.
These diagnoses required evidence of impairment in two settings
for both child and adult participants. Typically this involved evi-
dence of impairment at home and school for children and young
adults or impairment at home and work for middle-aged adults. No
individuals were given clinical diagnoses of ADHD–H/I. This
likely reflects the lower prevalence of this subtype in the popula-
tion, particularly in older samples (Barkley, 1998), as well as the
heavy emphasis on the assessment of attention during neuropsy-
chological evaluations. Review of the data indicated that it is likely
that if only parent-report of ADHD symptoms had been used to
make the diagnosis, approximately 10%–15% of individuals with
ADHD–C would have been diagnosed as ADHD–H/I, depending
on the cutoff used.

A number of individuals were not diagnosed with ADHD or any
other neurodevelopmental disorder (n � 123). Approximately 44%
of these individuals were diagnosed with a mood, anxiety, or
adjustment disorder. A review of these individuals’ records indi-
cated that in most cases these problems were not severely affecting
the participant’s everyday functioning, and in all cases, these
problems did not significantly influence the patient’s test perfor-
mance (i.e., none of these cases evidenced a neuropsychological
impairment defined as more than 2 SDs below the mean). There-
fore, these individuals are subsequently referred to as non-ADHD,
because they did not qualify for a clinical diagnosis of ADHD or
any other neurodevelopmental disorder (i.e., learning disability,
Asperger syndrome, or pervasive developmental disorder not oth-
erwise specified). Table 1 presents characteristics separately by

Table 1
Total Sample Characteristics

Variable

Non-ADHD (n � 123) ADHD inattentive (n � 86) ADHD combined (n � 228)

M SD % M SD % M SD %

Age (years) 16.67 12.13 13.26 7.30 14.69 8.89
Sex (% male) 59 49 66
Handedness (% right) 89 85 86
Learning disability 28 28
Developmental disability 4 11
FSIQ 103.3 13.4 102.0 11.0 101.9 14.5
Total Achievement 103.8 13.2 100.8 12.0 99.5 15.0
Total CPARS 57.7 10.2 60.4 8.6 66.1 10.8

Note. Test results for Full-Scale IQ (FSIQ) and Total Achievement are presented in standard score units (M � 100, SD � 15); test results for Total
Conners Parent ADHD Rating Scale (CPARS) are presented in T-score units (M � 50, SD � 10). ADHD � attention-deficit/hyperactivity disorder.
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clinical diagnostic group. Non-ADHD participants tended to be
older than both ADHD groups (non-ADHD: M � 16.7, SD � 12.1;
ADHD–I: M � 13.3, SD � 7.3; ADHD–C: M � 14.7, SD � 8.9),
non-ADHD versus ADHD–I, t(207) � 2.33, p � .02; non-ADHD
versus ADHD–C, t(349) � 1.75, p � .08; ADHD–I versus
ADHD–C, t(312) � 1.33, p � .19. Diagnostic groups also signif-
icantly differed in sex distributions, �2(2, N � 437) � 8.10, p �
.02. A greater proportion of males were found in the ADHD–C
subsample (percentage male: non-ADHD � 59.3, ADHD–
I � 48.8, ADHD–C � 66.2), consistent with previous literature
(Barkley, 1998). For this reason, age- and/or sex-corrected norms
were used for neuropsychological tasks and parent-report mea-
sures to minimize the likelihood of identifying age or sex taxa
(Schmidt et al., 2004). Inspection of the data also reveals that the
sample included a wide range of scores for all measures, including
the full range of raw scores on the Conners Parent Rating Scale
subscales (Conners, 1997). Thus, although this is a clinical sample,
it is likely that the full range of impulsivity/hyperactivity and
inattention was sampled.

Indicator sets were constructed using only subjective report,
objective test data, or mixed subjective report and objective test
indicators. Inclusion of varied indicator sets facilitates examination
of the generalizability of results. If only subjective report measures
produce taxonic findings, the resulting taxon might have been
artificially created owing to expectancy effects (Beauchaine &
Waters, 2003). Identification of a similar taxon in subjective re-
port, objective test data, and mixed indicator sets would provide
strong support for the taxonic conjecture. Alternatively, consistent
findings of dimensional structure across multiple indicator sets
provide strong evidence against the taxonic conjecture (Meehl,
2004). Subjective report and objective test data measure different
aspects of behavior (Shaywitz, Fletcher, & Shaywitz, 1994, 1995)
and thus may be differentially sensitive to an ADHD taxon. In-
clusion of both subjective report and neuropsychological test data
further enhances the possibility that an ADHD taxon would be
detected, if present, owing to specification of a diverse array of
indicator sets tapping different aspects of cognition and behavior.

Suitability of Indicator Sets to Taxometric Procedures

The initial search for an ADHD taxon used 11 indicator sets on
the basis of previous research suggesting performance decrements
on measures of attention, impulsivity, academic tasks, intellectual
ability measures, working memory, processing speed, and parent-
report measures of ADHD symptoms (Barkley, 1997, 1998; Fra-
zier et al., 2004; Goodyear & Hynd, 1992).

Along with theoretical considerations, indicator sets were also
chosen according to estimates of indicator validity. Some research
has suggested that indicator validities of d � 1.2 or greater produce
reliable results and accurate classification; however, other studies
have suggested that some taxometric procedures may yield inter-
pretable results with indicator validities greater than d � 1.0 (for
a review, see Schmidt et al., 2004). With this in mind, we exam-
ined two very different estimates of indicator validity. The first
involved effect sizes derived from comparisons of individuals
diagnosed with ADHD in previous research. Effect sizes (d) for
group discriminations were based on previous meta-analytic work
for the neuropsychological variables (Frazier et al., 2004) and
normative data for the parent-report variables (Conners, 1997).

The range of effect sizes is presented in parentheses for each
indicator set described below. Although the effect sizes based on
clinical diagnoses are in some cases significantly lower than 1.2,
this is likely due to the misassortment of a few individuals when
making diagnoses. Such misassortment is expected even under the
most careful of research conditions owing to the imperfection of
measurement instruments used in making diagnoses. However,
these values still demonstrate medium to large effect sizes for all
indicator sets.

The second empirical consideration concerned the estimated
latent indicator validity derived under the assumption that the data
are taxonic. Latent indicator validity estimates, referred to previ-
ously as a priori taxometric power analyses, have been used in
previous research to estimate the potential utility of indicator sets
(Gibb, Alloy, Abramson, Beevers, & Miller, 2004; A. M. Ruscio,
Ruscio, & Keane, 2002). Estimates of average indicator validity
were derived using the formula provided in Meehl and Yonce
(1996, p. 1146). Nuisance correlations were estimated by comput-
ing the average correlation from the upper and lower 20% of the
resulting distribution. To provide a conservative estimate of latent
indicator validity, moderate base-rate estimates were used based
on clinical diagnoses.

A priori taxometric power analyses are particularly useful for
ruling out the possibility that dimensional results were obtained
owing to low indicator validities of the taxon. Table 2 presents
sample sizes, sample correlations, estimated nuisance correlations,
average skewness, and latent indicator validity (d) for each indi-
cator set. Inspection of this table reveals that all indicator sets
produced latent indicator validities greater than d � 1.0, with most
being greater than 1.25. These results suggest that all indicator sets
should produce clear results.

In addition to indicator validity, there are two other important
considerations for determining whether an indicator set is suitable
for taxometric procedures: the overall sample size and the esti-
mated taxon base rate. Taxometric procedures tend to yield less
interpretable results when the overall sample size is too low. Meehl
(1995) suggested a minimum overall sample size of 300, although
other work has suggested that smaller sample sizes can be used for
some taxometric procedures when other data parameters are good
(Meehl & Yonce, 1994, 1996). Schmidt and colleagues (2004)
argued that having a moderate base rate is important for obtaining
clear findings when using small to moderate sample sizes. All but
one of our total sample indicator sets had sample sizes greater than
300. The exception was the mixture set; however, this set had nine
indicators, and larger numbers of indicators tend to produce more
stable findings (Beauchaine & Beauchaine, 2002). Several indica-
tor sets from the ADHD–C only subsample and both indicator sets
for the ADHD only subsample had sample sizes below 300.
However, all sample sizes were greater than or equal to 245,
included highly reliable indicators (r � .75) with good score
ranges, showed clear separation of taxonic and dimensional results
in simulations, and had otherwise favorable data parameters.
Therefore, we expected results from these indicator sets to be
adequate.

The base rate of ADHD clinical diagnosis in the total research
sample ranged from .72 to .73. These moderate base rates should
produce clear results with sample sizes greater than 300 when at
least three indicators are available (Schmidt et al., 2004). Because
the overall sample sizes were lower in the ADHD–C subsample
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but the base rates of ADHD were closer to .50 (ADHD–C sample
base-rate range � .64–.67), results for these analyses were ex-
pected to be comparable to those for the total sample.

Each of the indicator sets was examined in both the total sample
and a truncated sample with ADHD–I participants removed
(ADHD–C subsample). The more distilled sample was included
for two reasons. This sample concentrates on the more extreme
group, posited to show all of the deficits associated with ADHD,
and thus provides an additional consistency test, because similar
results in both samples would support either dimensional or tax-
onic conclusions. Also, some researchers have suggested that
ADHD–I and ADHD–C may be separate, unrelated disorders
(Milich et al., 2001). Examining a mixed sample may lower the
base rate of any potential taxa and potentially change patterns of
nuisance covariance, thus increasing the risk of spurious null
findings. Individuals with ADHD–C represented the larger propor-
tion of individuals in the total sample, and therefore examination
of these individuals independently was methodologically more
tenable than examining the ADHD–I subsample independently.
All indicator sets were standardized into a z-score metric using the
sample mean and were transformed so that higher scores indicated
better performance or fewer reported symptoms. When possible,
all analyses were rerun using the raw scores. Highly similar results
were obtained; therefore, only results using the standard scores are
presented.

Achievement (d � 0.70–1.01). The basic reading, math calcu-
lation, written expression, and academic fluency indices from the
Woodcock–Johnson Tests of Ability—Third Edition were used as
separate variables in one indicator set (Woodcock, McGrew, &
Mather, 2001). Previously reported internal consistency reliabili-
ties of these indices ranged from .91 to .95 (McGrew & Wood-
cock, 2001).

Conners Parent ADHD Rating Scale (CPARS)—Revised
(d � 1.17–3.38). The Attention/Cognitive Symptoms, Hyperac-
tivity/Impulsivity, and Oppositional Behavior scales from the
CPARS–Revised: Short Form were examined in one indicator set
(Conners, 1997). Previously reported internal consistency reliabili-
ties for these scales ranged from .86 to .94 (Conners, 1997).

We also examined two indicator sets composed of more homo-
geneous subsets of CPARS items. These sets were included be-
cause taxometric procedures may perform poorly if only one or
two indicators from the more heterogeneous indicator sets de-
scribed above have low validity for separating the taxon from the
complement group (Meehl, 1995). The subsets were composed of
only inattention items (CPARS–I) and only hyperactivity/impul-
sivity items (CPARS–H/I). Because individual items have limited
range, items were pooled into item parcels by taking the mean of
the items (four items per parcel for inattentive items and three
items per parcel for hyperactive/impulsive items). This procedure
resulted in two sets of three indicators per set. Item parcels

Table 2
Indicator Set Characteristics for the Total Sample, ADHD–C Subsample, and ADHD Subsample

Sample and indicator
set

Non-ADHD
(n)

ADHD–I
(n)

ADHD–C
(n)

Total sample
(N)

Sample
(r)

Nuisance
(r)

Average
skew

Latent validity
(d)

Total sample
ACH 87 70 158 315 .65 .27 0.03 2.33
CPARS 94 72 176 342 .44 .27 �0.30 1.23
CPARS–I 93 72 173 338 .80 .24 0.47 3.69
CPARS–H/I 93 72 173 338 .69 .09 �0.74 3.09
CPT Factors 103 76 205 384 .53 .11 �1.04 2.13
CPT Validity 103 76 205 384 .38 .25 0.18 1.03
IQ Indices 110 78 206 394 .52 .04 0.02 2.23
IQ Subtests 108 77 205 390 .36 .15 �0.14 1.28
NP–PS 92 69 186 347 .34 �.14 �0.11 1.95
Mixture 69 53 122 244 .28 .08 �0.33 1.17

ADHD–C subsample
ACH 87 158 245 .66 .24 0.08 2.32
CPARS 94 176 270 .47 .21 �0.32 1.47
CPARS–I 93 173 266 .82 .31 0.46 3.59
CPARS–H/I 93 173 266 .71 .13 �0.62 2.99
CPT Factors 103 205 308 .50 .13 �1.09 1.82
CPT Validity 103 205 308 .46 .25 0.13 1.32
IQ Indices 110 206 317 .47 .03 0.05 1.91
IQ Subtests 108 205 313 .37 .14 �0.13 1.27
NP–PS 92 186 278 .33 �.21 �0.15 1.92
Mixture 69 122 191 .28 .07 �0.35 1.12

ADHD subsample
CPARS–H/I 72 173 245 .68 .09 �0.56 2.97
NP–PS 69 186 255 .35 .21 �0.10 1.11

Note. ADHD � attention-deficit/hyperactivity disorder (C � combined type; I � inattentive type); ACH � Achievement tests from the Woodcock–
Johnson Tests of Ability (3rd ed.); CPARS � Conners Parent ADHD Rating Scale (I � inattention items; H/I � hyperactivity/impulsivity items); CPT
Factors � untransformed factor scores derived from the Conners Continuous Performance Test (CPT); CPT Validity � Conners CPT variables with the
highest validity for separation of clinical groups; IQ Indices � index scores from the Wechsler Adult Intelligence Scale—III (WAIS–III) and Wechsler
Intelligence Scale for Children—III (WISC–III); IQ Subtests � IQ subtests from the WAIS–III and WISC–III; NP–PS � neuropsychological measures of
processing speed; Mixture � selected measures with the highest clinical validity from the other indicator sets.
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facilitate sufficient range for each indicator variable (13-point for
inattentive items; 10-point for hyperactive/impulsive items). The
internal consistency reliability of these parcels was quite good for
three- to four-item scales (for CPARS–I, r � .75–.86; for CPARS–
H/I, r � .64–.78). Previous empirical work has used a similar
procedure for creating input indicators (A. M. Ruscio et al., 2002).

Conners Continuous Performance Test (CPT; Conners, 2000a;
d � 0.48–0.91). Two sets of indicators consisted exclusively of
measures from the Conners CPT. The first indicator set was
derived by averaging individual measures included in the Atten-
tion, Impulsivity, and Vigilance factors of CPT output. Only
omissions, commissions, hit reaction time, hit reaction time stan-
dard error, variability, and hit reaction time interstimulus interval
were included in the Attention factor average, as the other indi-
vidual measures were not available. The Impulsivity and Vigilance
factors were computed by averaging each of the individual mea-
sures included in these sections of the CPT output. This indicator
set is referred to subsequently as CPT Factors. All of the indicators
included in this factor had substantial significant negative skew
(Attention � –0.96, Impulsivity � –1.86, and Vigilance � –0.31;
average skew � –1.04). Previously reported split-half reliability
coefficients for a subset of the individual measures composing
these factors ranged from .66 to .95 (Conners, 2000b).

The second indicator set consisted of three individual CPT
scores, Commissions, Variability, and Detectability (CPT Valid-
ity). These measures were chosen because they discriminated
ADHD subjects from non-ADHD subjects better than any of the
other individual CPT measures in the present sample.

Comparison of results from CPT Factors and CPT Validity
ensured that a taxon was not spuriously identified owing to the
effect of skew on the shape of taxometric graphs. CPT Factors had
an average skewness of –1.04, whereas CPT Validity had an
average skewness of 0.18. Negative skew tends to result in a
left-to-right downward tilt to taxometric graphs, whereas positive
skew tends to result in a left-to-right upward tilt. Thus, analyses
using CPT Factors might tend to spuriously identify a low base-
rate taxon when the data are actually consistent with a dimensional
structure, whereas CPT Validity might tend to spuriously identify
a high base-rate taxon when the data are actually consistent with a
dimensional structure. Alternatively, if both sets of indicators were
to produce a taxon with a similar base rate, this would provide
strong support for the existence of the taxon.

Wechsler Intelligence Scales (IQ; d � 0.41–0.85). Two sets
of indicators were derived from either the Wechsler Adult Intelli-
gence Scale—Third Edition (WAIS–III; Wechsler, 1997a) or the
Wechsler Intelligence Scale for Children—Third Edition (WISC–
III; Wechsler, 1991). The first set consisted of four index scores
provided by each intellectual measure (IQ Indices). Although the
index scores are not identical across measures, they are quite
similar in composition, are highly correlated, and often include the
same subtests. For example, the Working Memory index on the
WAIS–III consists of Digit Span, Arithmetic, and Letter–Number
Sequencing, whereas the WISC–III Freedom From Distractibility
index consists of only Digit Span and Arithmetic. The second
indicator set consisted of the IQ subtests thought to be most
sensitive to the attention and working memory deficits observed in
ADHD (IQ Subtests). This set included the Digit Span, Arithmetic,
Digit Symbol (or Coding on the WISC–III), and Symbol Search
subtests (Kaufman, 1994). Approximately 27% of individuals in-

cluded in the IQ Indices set received the WAIS–III and 73% the
WISC–III, and these percentages did not significantly differ as a
function of ADHD clinical diagnosis, �2(2, N � 394) � 1.62, p �
.44. Similar results were obtained for the IQ Subtests indicator set
(26% received the WAIS–III, and 74% the WISC–III), �2(2, N �
390) � 1.46, p � .48. Previously reported reliabilities for the
indices and subtests used in these indicator sets ranged from .70 to
.96 (Wechsler, 1991, 1997b).

Neuropsychological measures of processing speed (NP–PS;
d � 0.48–0.85). Neuropsychological measures of processing
speed were included because of suggestions that individuals who
exhibit symptoms of sluggish cognitive tempo may identify a
distinct subset of individuals diagnosed as ADHD–I (Beauchaine,
2003; Carlson & Mann, 2002). In this context, measures of pro-
cessing speed were conceptualized as behavioral indicators of
sluggish cognitive tempo (Sullwold, 2004). These measures in-
cluded the Coding and Symbol Search subtests of the Wechsler
scales and hit reaction time from the Conners CPT.

Mixture. The final indicator set consisted of measures chosen
from all of the previous indicator sets. In general, measures were
chosen to have little overlap with other measures outside of their
original indicator set and to have high validity for the separation of
ADHD from control participants. This was done to examine the
generalizability of any identified taxa, to evaluate an indicator set
including variables with the highest estimated validity, and to
include an indicator set with a larger number of indicators than
other sets. Having a large number of indicators may produce
clearer results (Schmidt et al., 2004). The indicators included
CPARS attention/cognitive symptoms, CPARS hyperactivity/im-
pulsivity, Achievement—math calculation, Achievement—written
expression, CPT Attention, CPT Impulsivity, CPT Vigilance, IQ—
Working Memory/Freedom From Distractibility, and IQ—Pro-
cessing Speed.

To examine whether ADHD–I is a distinct subtype relative to
ADHD–C, all control cases were removed from the sample
(ADHD subsample) and two indicator sets were examined,
CPARS–H/I and NP–PS. The CPARS–H/I set was included on the
basis of findings of previous latent class analyses suggesting that
the distinction between ADHD subgroups occurs for hyperactive/
impulsive items (Neuman et al., 1999). The NP–PS set was in-
cluded to examine the hypothesis that a subset of individuals with
ADHD–I represents a distinct category of individuals with slug-
gish cognitive tempo (Beauchaine, 2003; Carlson & Mann, 2002).

Analytic Strategy

Taxometric methodologists have recommended using multiple
taxometric procedures as well as other techniques for identifying
latent classes (Schmidt et al., 2004). In particular, latent class
analysis (LCA) can be a useful first step in the search for latent
classes/taxa (Solomon, Haaga, & Arnow, 2001). LCA is particu-
larly well suited for discriminating between two or more latent
classes, whereas taxometric procedures are best able to discrimi-
nate between one or two latent classes. The presence of more than
two classes in a data set may cause taxometric procedures to
perform poorly, as each latent class may have a low base rate as
well as potentially distinctive profiles on the indicators. Therefore,
we began by subjecting indicator sets to LCA. Classification error
rate, the Bayesian information criterion (BIC), and the Akaike
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information criterion (AIC) were examined to determine the pres-
ence of two or more latent classes (McCutcheon, 2002). If no
strong evidence of more than two latent classes emerged in LCA
results, indicator sets were deemed suitable for taxometric proce-
dures.

Taxometric analyses were performed using program code de-
veloped by J. Ruscio (2004b) for the R programming environment.
Three taxometric procedures were used in the present study: mean
above minus below a cut (MAMBAC), maximum eigenvalue
(MAXEIG), and latent mode (LMODE). Examination of three
procedures serves as an additional consistency test, particularly
because these are three relatively dissimilar methods (Schmidt et
al., 2004). Several statistics were used to examine taxometric
results: the variability of the base rate identified in MAXEIG
analyses, the weighted-fit d statistic provided in J. Ruscio’s
(2004a) implementation of MAXEIG and MAMBAC, the nose
count test based on raters’ evaluations of taxometric graphs (for an
extended discussion of this test, see Schmidt et al., 2004), and the
convergence of base rates across taxometric procedures. To cal-
culate the weighted-fit d index, 20 simulation samples were re-
quested (10 taxonic, 10 dimensional) for each analysis. This index,
and the simulation procedure more generally, were recently used to
evaluate the latent structure of psychopathic personality (Marcus,
John, & Edens, 2004), and a recent Monte Carlo study demon-
strated that a closely related index, the comparative curve fit index,
performs quite well at similar sample sizes and data parameters to
the present study (J. Ruscio, Ruscio, & Meron, in press).

For the nose count test, eight raters unfamiliar with taxometric
procedures rated the individual output indicator graphs resulting
from each analysis, the average graph derived from the mean of all
indicator graphs, and an overlay graph that presents the average
graph superimposed on the average results (�1 SD) derived
from 10 simulated taxonic and 10 simulated dimensional data sets
with roughly equivalent characteristics to the research data. For
each taxometric procedure, raters were first presented with classic
taxonic and dimensional graphs and given a verbal description of
the general shape of taxonic and dimensional plots (i.e.,
MAMBAC taxonic plots are generally convex and shaped like a
hill; dimensional plots are generally concave and shaped like a
valley). Then, raters were shown a page with eight suboptimal
simulated data sets (four taxonic, four dimensional). These data
sets were simulated to represent the presumed ends of the distri-
bution of analytic parameters for the research indicator sets. Thus,
four simulated data sets (two taxonic, two dimensional) were based
on N � 300, three indicators, base rate of taxon � .70, sample r �
.40, nuisance r � .20, and mild skew; the other four simulated data
sets (two dimensional, two taxonic) were based on N � 380, four
indicators, base rate of taxon � .50, sample r � .50, nuisance r �
.10, and no skew. Raters were asked to place a number (1 �
taxonic, 2 � dimensional, or 3 � unspecified) over each average
simulation graph. These example simulated data sets were used
exclusively to educate raters about the shapes of taxonic and
dimensional graphs under optimal and suboptimal analytic condi-
tions and are distinct from simulated data used to examine the
performance of decision rules. These simulated data sets are also
different from the 20 simulated data sets (10 taxonic, 10 dimen-
sional) generated as part of the analyses of research data for the
computation of the fit d statistic and overlay graphs.

After rating example simulation data, raters were shown the
individual and average indicator graphs and asked to make the
same judgments they had made for the simulated graphs. Finally,
they were shown the overlay graphs and asked to choose which
graph contained lines that most closely matched or to indicate that
they were not able to choose. For all decisions, raters were en-
couraged to make a choice between dimensional and taxonic and
to reserve the unspecified category for instances in which they
were unable to make a choice. Ratings were done separately for all
MAMBAC graphs, followed by all MAXEIG graphs, and finally
for all LMODE graphs. LMODE produces only individuals graphs
and overlay graphs, because each indicator set generates only one
individual graph, obviating the need for averaging.

Convergence of base-rate estimates should be observed when
results have consistently identified a taxon. Although there are no
guidelines for interpreting the absolute magnitude of convergence,
widely divergent results do not support the taxonic conjecture.
Therefore, this decision rule was examined only in situations
where other rules suggested possible taxonicity.

A simulation study was undertaken to determine whether deci-
sion rules described above would provide accurate results for each
indicator set and taxometric analysis.1 For each indicator set, two
data sets were simulated (one dimensional, one taxonic). Each pair
of simulated data was generated using the specifications of one of
the eight original indicator sets from the total sample. The
CPARS–I and CPARS–H/I indicator sets were not included in this
simulation study as their characteristics are largely overlapping
with the CPARS indicator set. Specifications included sample size,
number of indicators, taxon base rate, indicator validity, average
interindicator total sample correlation, nuisance correlations, and
skewness. The taxon base rate, indicator validity, and nuisance
correlations were derived from preliminary analyses of the total
sample data. Skewness values provided to the simulation program
were estimated using guidelines presented in the manual (J. Rus-
cio, 2004a) and based on the actual skewness values of the indi-
cator sets. Simulated data were analyzed using each taxometric
procedure to determine whether any procedures performed poorly
under conditions similar to those seen in actual data. Each of the
decision rules was evaluated, as decision rules may provide vari-
able results across taxometric procedures and indicator sets. The
nose count test was implemented by having four raters unfamiliar
with taxometric procedures evaluate individual, average, and over-
lay taxometric graphs. The reliability of ratings was determined
using the kappa coefficient to determine whether raters could
reliably distinguish between taxonic and dimensional graphs.

Results

LCA

Successive latent class models were tested with solutions rang-
ing from one to six classes for each indicator set. Six was chosen
as an upper limit to ensure that models considered the possibility
of there being even more classes than identified in previous work
(Milich et al., 2001). Classification error rates tended to increase
from one- to six-class solutions, with the biggest rise occurring

1 CPARS–I, CPARS–H/I, and NP–PS indicator sets were not included in
the simulation study.
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from the one- to two-class solution. The exception to this pattern
occurred for the IQ Subtests indicator set, where a local minimum
was reached at the four-class step, and the NP–PS set, where the
minimum was reached at the four- and five-class steps. AIC values
tended to decline from one- to six-class solutions, with the excep-
tion of the IQ Indices and NP–PS indicator sets, where a local
minimum was reached at the five-class step. BIC values showed
local minima for all indicator sets. However, the number of classes
identified varied across indicator sets from two to five, and in
several cases the minimum was extremely close to values for
adjacent solutions.

To further examine the possibility of two or more latent classes,
LCA classifications were compared with clinical diagnostic clas-
sifications for each indicator set. In each set, the two-class classi-
fication was compared with a variable coded 1 � non-ADHD, 2 �
any ADHD subtype. The three-class classification was compared
with a variable coded as 1 � non-ADHD control, 2 � ADHD–I,
3 � ADHD–C. The four-class solution was compared with a
variable coded 1 � non-ADHD control, 2 � ADHD–I, 3 �
ADHD–C, 4 � any ADHD subtype with a learning disability
diagnosis. Agreement of LCA results and clinical diagnoses was
evaluated by computing the percentage of cases for which both
variables agreed. In every case, the tables were structured to yield
the highest possible level of agreement. Agreement was poor for
all classifications, with two-class solutions showing the highest

agreement (average percentage agreement: two-class solu-
tion � 55.2, three-class solution � 40.6, four-class solu-
tion � 33.2).

Overall, these results indicate no clear or consistent winner in
terms of the number of latent classes. Given the findings for the
AIC and classification errors criteria, it is possible that these results
indicate a large number of latent classes (i.e., six or more). How-
ever, this would be inconsistent with previous theory regarding the
number of ADHD subtypes (Milich et al., 2001). Additionally,
because these results do not suggest a definitive number of latent
classes and LCA is not useful for distinguishing between one or
two latent classes (i.e., dimensional vs. categorical representa-
tions), results may be consistent with a latent dimension. Finally,
the lack of a definitive class solution indicates that taxometric
procedures should not have been substantially influenced by the
presence of multiple, low base rate taxa. Therefore, all indicator
sets were submitted to taxometric procedures.

Simulation Analyses

Table 3 presents the results of the simulation study. Inspection
of the bottom portion of the table reveals low reliability for ratings
of individual and average MAMBAC and MAXEIG graphs
(MAMBAC individual mean � � .32, range � .22–.45;
MAMBAC average mean � � .36, range � .31–.46; MAXEIG

Table 3
Simulation Study Results

Indicator set

MAMBAC

Fit
(d)

MAXEIG

Fit
(d)

LMODE

Rating % Base rate Rating % Base rate Rating %
Base rate

(M)Tax Dim Unsp M SD Tax Dim Unsp M SD Tax Dim Unsp

ACH dimensional 0 100 0 .53 .04 5.3 0 100 0 .52 .27 2.9 0 100 0 .50
ACH taxonic 100 0 0 .39 .03 �6.5 100 0 0 .27 .03 �2.6 100 0 0 .60
CPARS dimensional 0 100 0 .54 .03 11.2 0 100 0 .19 .11 3.0 0 100 0 .56
CPARS taxonic 100 0 0 .44 .06 �2.3 100 0 0 .12 .06 �2.3 100 0 0 .40
CPT Factors dimensional 0 100 0 .41 .02 6.9 25 75 0 .19 .07 �0.4 0 100 0 .53
CPT Factors taxonic 100 0 0 .39 .07 0.8 100 0 0 .07 .01 �3.4 50 50 0 .64
CPT Validity dimensional 0 100 0 .63 .03 16.0 0 100 0 .66 .21 1.4 0 100 0 .47
CPT Validity taxonic 100 0 0 .50 .05 3.5 100 0 0 .57 .05 �2.3 100 0 0 .31
IQ Indices dimensional 0 100 0 .53 .05 6.6 0 100 0 .56 .25 4.1 0 100 0 .50
IQ Indices taxonic 100 0 0 .40 .04 �1.5 100 0 0 .44 .08 �1.5 100 0 0 .47
IQ Subtests dimensional 0 100 0 .51 .02 5.4 0 100 0 .31 .08 2.6 0 100 0 .50
IQ Subtests taxonic 75 25 0 .43 .04 1.4 100 0 0 .38 .05 �2.6 100 0 0 .48
Mixture dimensional 0 100 0 .53 .04 1.2 0 100 0 .53 .18 2.5 0 100 0 .50
Mixture taxonic 25 75 0 .46 .08 1.1 100 0 0 .29 .08 �1.1 0 100 0 .42

Reliability of ratings

Individual graphs Average graphs Overlay graphs

MAMBAC MAXEIG LMODE MAMBAC MAXEIG MAMBAC MAXEIG LMODE

Avg. � .32 .57 1.00 .46 .63 .93 .99 .92

Note. Fit d � weighted fit d statistic; negative values favor taxonic results, and positive values favor dimensional results. Rating % refers to the percentage
of overlay graphs rated as taxonic (tax), dimensional (dim), or unspecified (unsp). MAMBAC � mean above minus below a cut; MAXEIG � maximum
eigenvalue; LMODE � latent mode; ACH � Achievement tests from the Woodcock–Johnson Tests of Ability (3rd ed.); CPARS � Conners Parent ADHD
Rating Scale; CPT Factors � untransformed factor scores derived from the Conners Continuous Performance Test (CPT); CPT Validity � Conners CPT
variables with the highest validity for separation of clinical groups; IQ Indices � index scores from the Wechsler Adult Intelligence Scale—III (WAIS–III)
and Wechsler Intelligence Scale for Children—III (WISC–III); IQ Subtests � IQ subtests from the WAIS–III and WISC–III; Mixture � selected measures
with the highest clinical validity from the other indicator sets.
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individual mean � � .57, range � .30–.88; MAXEIG average
mean � � .63, range � .23–.86). However, ratings of overlay
MAMBAC and MAXEIG graphs had excellent reliability
(MAMBAC mean � � .93, range � .71–1.00; MAXEIG mean
� � .99, range � .88–1.00). Both individual and overlay LMODE
graphs produced excellent reliability (individual mean � � 1.00,
range � 1 to 1; overlay mean � � .92, range � .73–1.00). On the
basis of the higher reliability of ratings for MAMBAC and MAX-
EIG overlay graphs and to reduce redundancy, only results from
these ratings are presented.

Results of the simulation study indicated that ratings produced
clear and interpretable results for most indicator sets and taxomet-
ric procedures (i.e., 87.5% of analyses rated with 100% agreement/
confidence). The exceptions occurred for ratings of MAMBAC
analyses on the Mixture indicator set and LMODE analyses on the
CPT Factors and Mixture indicator sets. The standard deviation of
base-rate estimates derived from MAXEIG analyses produced
good separation between dimensional and taxonic data for all
indicator sets except IQ Subtests. The weighted-fit d statistic
performed well for most analyses. The exceptions occurred for
MAMBAC analyses on the CPT Factors, CPT Validity, IQ

Subtests, and Mixture indicator sets and MAXEIG analyses on the
CPT Factors indicator set. For these analyses, the weighted-fit d
statistic typically showed good separation, but both values—sim-
ulated dimensional and taxonic—were in the same direction.
Decision rules for this subset of analyses should be interpreted
with caution on the basis of their poor performance in the
simulation study.

Taxometric Analyses

Table 4 presents classification decisions (taxonic vs. dimen-
sional) and base rates, separately for each sample, indicator set,
and taxometric analysis (for an extended discussion of the three
taxometric procedures used in the present study, see Cole, 2004;
Schmidt et al., 2004).

MAMBAC. MAMBAC was performed using all indicators as
separate output variables. To increase statistical power, a compos-
ite input indicator was created by summing all of the remaining
indicators. MAMBAC plots that show a convex shape suggest
taxonic structure, and plots with a concave shape suggest dimen-
sional structure. Figure 1 presents MAMBAC overlay graphs for

Table 4
Taxometric Statistics, Separately for Each Sample, Taxometric Procedure, and Indicator Set

Indicator set

MAMBAC MAXEIG LMODE

Rating % Base rate
Fit
(d)

Rating % Base rate
Fit
(d)

Rating %
Base rate M

RangeTax Dim Unsp M SD Tax Dim Unsp M SD Tax Dim Unsp

Total sample
ACH 0 100 0 .44 .04 3.3 0 87.5 12.5 .28 .24 1.8 0 100 0 .50 .22
CPARS 0 100 0 .47 .06 11.7 0 100 0 .28 .14 5.5 75 25 0 .63 .35
CPARS–I 0 100 0 .62 .02 3.3 0 75 25 .82 .06 1.7 0 100 0 .48 .34
CPARS–H/I 0 100 0 .40 .04 4.5 0 100 0 .16 .04 1.6 0 100 0 .56 .40
CPT Factors 0 100 0 .33 .01 4.8 62.5 0 37.5 .15 .09 0.2 0 100 0 .61 .46
CPT Validity 0 100 0 .61 .02 8.4 87.5 12.5 0 .55 .18 �1.4 0 87.5 12.5 .49 .12
IQ Indices 0 100 0 .44 .02 5.4 0 87.5 12.5 .33 .12 2.2 0 100 0 .53 .20
IQ Subtests 0 100 0 .43 .04 6.1 0 87.5 12.5 .40 .20 0.5 0 100 0 .49 .09
NP–PS 0 100 0 .43 .07 7.7 0 100 0 .47 .26 2.0 12.5 87.5 0 .50 .07
Mixture 0 100 0 .39 .07 2.9 12.5 87.5 0 .30 .16 1.6 37.5 62.5 0 .60 .30

ADHD–C subsample
ACH 0 100 0 .44 .03 3.0 0 87.5 12.5 .28 .25 2.2 0 100 0 .50 .22
CPARS 0 100 0 .52 .04 9.0 0 87.5 12.5 .46 .35 4.1 50 50 0 .53 .07
CPARS–I 0 100 0 .61 .02 2.6 37.5 37.5 25 .16 .05 �0.1 0 100 0 .48 .45
CPARS–H/I 0 100 0 .39 .04 8.9 0 100 0 .18 .06 1.1 12.5 87.5 0 .56 .38
CPT Factors 0 100 0 .36 .02 7.6 0 100 0 .17 .09 2.3 0 100 0 .61 .44
CPT Validity 0 100 0 .59 .02 5.9 0 100 0 .73 .11 �2.9 0 100 0 .46 .27
IQ Indices 25 75 0 .44 .03 2.6 0 100 0 .31 .09 2.8 0 100 0 .53 .22
IQ Subtests 0 100 0 .58 .05 4.1 12.5 75 12.5 .41 .20 1.9 0 100 0 .50 .17
NP–PS 0 100 0 .49 .04 7.9 0 100 0 .47 .22 1.6 12.5 87.5 0 .50 .03
Mixture 0 100 0 .43 .04 3.3 37.5 62.5 0 .42 .21 �0.3 37.5 62.5 0 .46 .04

ADHD subsample
CPARS–H/I 0 100 0 .37 .02 2.6 12.5 87.5 0 .18 .06 1.1 0 100 0 .53 .35
NP–PS 0 100 0 .51 .03 6.8 0 100 0 .61 .17 2.0 0 100 0 .49 .12

Note. The final column refers to the range of base rates from the three taxometric procedures for each indicator set. MAMBAC � mean above minus
below a cut; MAXEIG � maximum eigenvalue; LMODE � latent mode; tax � taxonic, dim � dimensional, unsp � unspecified (could not be classified
as either taxonic or dimensional); fit � weighted-fit d statistic (negative values favor taxonic results, positive values favor dimensional results); ACH �
Achievement tests from the Woodcock–Johnson Tests of Ability (3rd ed.); CPARS � Conners Parent ADHD Rating Scale (I � inattention items; H/I �
hyperactivity/impulsivity items); CPT Factors � untransformed factor scores derived from the Conners Continuous Performance Test (CPT); CPT
Validity � Conners CPT variables with the highest validity for separation of clinical groups; IQ Indices � index scores from the Wechsler Adult
Intelligence Scale—III (WAIS–III) and Wechsler Intelligence Scale for Children—III (WISC–III); IQ Subtests � IQ subtests from the WAIS–III and
WISC–III; NP–PS � neuropsychological measures of processing speed; Mixture � selected measures with the highest clinical validity from the other
indicator sets; ADHD � attention-deficit/hyperactivity disorder (C � combined type).
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each indicator set in the total sample, and Table 4 presents the
classification ratings, base-rate estimates, and fit indices. The anal-
ysis for each indicator set results in two overlay graphs. In the first
graph, research data, averaged from each individual graph, are
overlaying simulated taxonic data (left), and in the second graph
research data are overlaying dimensional data (right). Decision
rules and graphs indicated strong support for dimensional latent
structure across all indicator sets. Inspection of Figure 1 indicates
that many graphs showed a clear concave appearance. In situations
where the appearance was not clearly concave, the match of
research data to simulated dimensional data was dramatically
better (weighted-fit d � 3.3 to 11.7, where highly positive d values
indicate dimensional structure). Similar results were obtained for
ADHD–C and ADHD subsamples. Ratings and fit d values indi-
cated strong support for dimensional structure across all indicator
sets.

MAXEIG. MAXEIG was performed using one input indicator
and all remaining indicators as output variables. Analyses were
permuted using each potential indicator as the input variable.
Overlapping windows (90% overlap) were used for each slice of
the input indicator. MAXEIG plots should show a convex shape
(peaked) if the data are taxonic, whereas irregular or flat plots
should be seen if the data are dimensional. Figure 2 presents
MAXEIG overlay graphs for each indicator set in the total sample.
The majority of decision rules and graphs indicated dimensional
structure. The exceptions were some indications of taxonicity in
the CPT Factors and CPT Validity indicator sets. For the CPT
Validity indicator set, 87.5% of graphs were rated as taxonic and
the weighted-fit d statistic was negative (–1.4). However, the
variability of base-rate estimates was quite high (SD � .18) rela-
tive to the variability of base-rate estimates from simulated taxonic
data (SD � .05) and was more consistent with the variability of
base-rate estimates from simulated dimensional data (SD � .21).
Similarly, for the CPT Factors indicator set, 62% of ratings indi-
cated taxonic structure, whereas 38% were unspecified. However,
the variability of base-rate estimates was more consistent with
dimensional structure (research data � .09, simulated taxonic �
.01, and simulated dimensional � .07). All other indicator sets
produced fairly clear evidence of dimensionality, including posi-
tive weighted-fit d values (d � 0.5 to 5.5), a greater percentage of
graphs rated as dimensional (87% to 100%), and highly variable
base-rate estimates within an indicator set (SDs ranging from .12
to .24).

Analyses of the ADHD–C and ADHD subsamples produced a
somewhat different pattern of results that indicated greater support
of dimensional findings. All but one of the indicator sets yielded a
greater percentage of dimensional ratings (62%–100%) than tax-
onic ratings (0%–38%). The exception was CPARS–I, where
ratings (37.5% taxonic, 37.5% dimensional, 25% unspecified) and
the weighted-fit d were equivocal. The variability of base-rate
estimates was also highly variable within indicator sets (SDs
ranging from .05 to .35). The CPT Validity indicator set was the
only data set to produce a highly negative weighted-fit d statistic
(d � –2.9), whereas the CPARS–I and Mixture indicator sets
produced negative but small weighted-fit d values (CPARS–I d �
–0.1; Mixture d � –0.3). All other indicator sets yielded highly
positive weighted-fit d statistics (ds � 1.1 to 4.1).

LMODE. LMODE analyses examined all of the indicators in
each indicator set simultaneously. Each LMODE analysis graphs

the distribution of scores on the first principal component. Figure
3 presents LMODE overlay graphs with research data overlaying
simulated dimensional and taxonic data. Research data are pre-
sented using the heavier line and remain consistent between both
overlay graphs; simulation data are presented using two lighter
lines and vary between graphs. Because LMODE generates a
single base-rate estimate per indicator set, it is not meaningful to
estimate the mean or standard deviation of the base-rate estimates.
Results indicated moderate evidence for taxonic structure for the
CPARS indicator set but for no other indicator sets. Inspection of
the CPARS overlay graph reveals two small, but separate, bimodal
peaks in the distribution. Raters were instructed to rate any graph
containing two separate peaks with an observable downturn be-
tween peaks as taxonic. However, researchers have debated the
significance of small peaks (Schmidt et al., 2004). Similarly,
overlay graphs for the Mixture indicator set revealed two small
peaks, possibly representing separate modes. However, raters were
not able to adequately distinguish between simulated dimensional
and taxonic data for this indicator set. Therefore, these peaks may
be consistent with either taxonic or dimensional findings. Ratings
and graphs for all other indicator sets were strongly consistent with
dimensional structure. Results for the ADHD–C and ADHD sub-
samples were also suggestive of dimensionality, except that ratings
for the CPARS indicator set were now equivocal (50% taxonic,
50% dimensional).

Consistency of Base-Rate Estimates

The consistency of base-rate estimates for each analysis in
which other decision rules suggested possible taxonicity was ex-
amined to confirm or reject this possibility. Table 4 presents the
range of average base-rate estimates across analytic procedures,
separately for each indicator set. In the total sample, only CPT
Validity (range � .12), IQ Subtests (range � .09), and NP–PS
(range � .07) showed modest consistency between base rates,
whereas CPT Factors estimates were inconsistent (range � .46).
MAXEIG and MAMBAC analyses using negatively skewed CPT
indicators tended to produce low base-rate estimates (.15 to .36).
Alternatively, analyses using positively skewed indicators pro-
duced higher base-rate estimates (.55–.73). This possibility was
anticipated on the basis of simulation results examining the effects
of skewness and further supports the dimensional hypothesis.
Truly taxonic findings should have yielded consistent base-rate
estimates, especially for highly similar indicator sets such as those
based on CPT variables.

In the ADHD–C subsample, CPARS (range � .07) and Mixture
(range � .04) showed good consistency between average base
rates. However, these indicator sets showed little consistency in
the total sample (CPARS, range � .35; Mixture, range � .30), and
the other decision rules were either equivocal or indicated dimen-
sionality. Thus, the evidence for taxonicity of these indicator sets
is weak.

To further examine the possibility that CPARS, CPT Validity,
CPT Factors, and Mixture indicator set analyses had identified an
ADHD taxon, we examined agreement between LMODE,
MAXEIG, and LCA classifications and ADHD diagnoses (1 �
ADHD any type, 2 � no ADHD). Results indicated poor agree-
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ment between these classifications and clinical diagnoses (CPARS,
� � .13–.14; CPT Validity, � � .02–.11; CPT Factors, � �
.04–.14; Mixture, � � .11–.18).

Discussion

The primary goal of the present study was to investigate whether
there was a category of cases showing changes in behavior or
performance on neuropsychological tasks that would be consistent
with a diagnosis of ADHD, versus behavioral and performance
indicators ranging along a continuum. The investigation used a
mix of subjective and performance measures that were chosen
because of their demonstrated association with clinical diagnoses
of ADHD. These multiple indicators of potential ADHD status
were evaluated using four different statistical methods
(MAMBAC, MAXEIG, LMODE, and LCA with continuous indi-
cators) and multiple interpretive guidelines, with data drawn from
a single clinical infrastructure with a high base rate of clinically
diagnosed ADHD. The present findings, based on taxometric pro-
cedures, indicated that the core symptoms of ADHD may be best
represented by a dimensional, not categorical, latent structure,
consistent with the results of a previous taxometric study (Haslam
et al., 2006). In the few cases where possible taxonic results were
suggested, these findings were not confirmed by other taxometric
procedures, decision rules, or results in a more distilled ADHD–C
subsample. However, we should note that null findings may have
occurred as a result of inadequate indicator selection, a significant
problem for many taxometric investigations in which dimensional
results are suggested.

Similarly, there was no evidence for a categorical distinction
among ADHD subtypes. This latter finding suggests that ADHD
subtypes may simply represent different ways of parsing the di-
mensions of inattention and hyperactivity/impulsivity. However,
the latter conclusion regarding a categorical distinction between
ADHD subtypes is limited by the fact that only two indicator sets
were examined. It may be that other indicators will demonstrate a
categorical distinction among ADHD subtypes. Sluggish cognitive
tempo has been suggested as a potential indicator of the categorical
distinction between ADHD subtypes (Beauchaine, 2003). Included
in the present research was an indicator set composed of process-
ing speed measures, presumably tapping the cognitive aspects of
this construct. However, future research is needed with subjective
report and possibly other behavioral indicators of this construct in
order to further evaluate the possibility of a distinct subset of
ADHD–I individuals. Future studies should also focus on indica-
tors with substantial validity for separating ADHD from non-
ADHD cases, as this will ensure that an ADHD taxon is not missed
owing to inadequate indicator validity.

The absence of taxonic findings in a taxometric analysis should
not be mistaken for strong evidence of dimensionality
(Beauchaine, 2003). The present results, as with any taxometric
analysis, may have been due to misspecification or poor validity of
indicators. The indicators were chosen specifically because they
have demonstrated a strong relationship to clinical and research
diagnoses of ADHD (Frazier et al., 2004). Furthermore, results
from preliminary power analyses suggest that poor validity was
not a significant problem. However, future research using other
candidate indicators, including specific DSM–IV symptom criteria,
is needed to address the problem of misspecification. It is possible,

albeit unlikely, that there exists a group of individuals who differ
qualitatively in terms of their DSM–IV symptomatology without
showing related discontinuities on other behavioral or neuropsy-
chological indicators. With this caveat in mind, failure to reject the
null hypothesis of dimensionality has important implications for
assessment and diagnosis.

Treating a dimensional, continuous construct as a categorical
one hinders accurate assessment. Dichotomization of the contin-
uum may reduce the reliability and validity of assessment (Mac-
Callum, Zhang, Preacher, & Rucker, 2002). This is especially true
if the dichotomy is implemented arbitrarily without reference to
research suggesting the optimal cut point on the latent trait(s).
Because DSM revisions have assumed a categorical diagnostic
approach, no research has examined the number or composition of
latent factors needed to accurately capture individuals at risk for
functional impairments resulting from problems with attention,
impulsivity, hyperactivity, behavioral dysregulation, and other
constructs associated with ADHD. Without identification of the
number and composition of these factors, the optimal cut point for
initiating intervention remains unknown.

The categorical approach also results in significant loss of
information because individuals with only mild, above threshold
symptoms are labeled similarly to individuals with severe symp-
toms or impairment. Individuals with severe symptoms may show
a greater range of impairment and may require different types of
interventions or additional intervention strategies relative to indi-
viduals with fewer symptoms. Similarly, categorical diagnoses
place individuals with mild, subthreshold symptoms into the non-
ADHD category. It is possible that some of these individuals
demonstrate functional impairment and would benefit from treat-
ment. For example, in the PTSD literature, it has been noted that
individuals with subthreshold symptoms often demonstrate signif-
icant impairment (Stein, Walker, Hazen, & Forde, 1997), and high
degrees of impairment have also been documented for subsyndro-
mal bipolar disorder (Lewinsohn, Seeley, & Klein, 2003). Unfor-
tunately, these individuals are often denied services because they
do not qualify for the PTSD or bipolar I diagnoses. It is possible
that the rising and relatively high diagnostic prevalence of ADHD
in the United States reflects an attempt to avoid the possibility of
children not receiving services. However, the more sensitive
threshold used to make categorical ADHD diagnoses may be
generating a number of false positives (i.e., individuals without
significant functional impairment or who do not need services).
Future research should attempt to identify the number and content
of dimensions needed to capture individuals at risk for functional
impairments due to problems with attention and hyperactivity/
impulsivity. It may be that only one dimension (ADHD symptom
severity) consisting of problems with attention is necessary to
accurately identify individuals needing intervention and disability
services. If the structure of ADHD is truly dimensional, accurate
identification and measurement of dimensions will lead to a re-
duction in diagnostic errors. Future studies should also distinguish
identified dimensions from symptoms of other disorders, to limit
diagnostic redundancy (Campbell & Fiske, 1959). Finally, future
research should focus on other variables that, in combination with
ADHD symptom severity, may predict disability, functional im-
pairment, or treatment response.

If dimensional results are further replicated, then the present
findings also have significant methodological implications for past
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and future ADHD research. Previous research has focused on
group comparisons using DSM criteria. The present results indicate
that previous studies should be interpreted as comparing ends of a
continuum rather than distinct, qualitatively different entities. This
may help to account for the inconsistent nature of findings in many
areas: Some studies may show large effects due to comparisons of
the extreme ends of the latent trait or traits, whereas other studies
may show modest effects due to the inclusion of individuals falling
in the middle of the continuum.

The present findings suggest that studies should shift from
extreme group comparisons to correlational designs. These types
of research designs can more accurately examine the relationship
between ADHD symptoms and social, educational, or occupa-
tional impairment or treatment response. In particular, studies can
examine whether the relationship between symptoms is linear or
nonlinear and whether some dimensions of behavior (i.e., hyper-
activity/impulsivity) show different relationships with impairment
or treatment. The present findings also imply that future studies
using a dimensional measurement approach are likely to have
increased statistical power as a result of increased reliability and
variability of scores.

The findings in this study, if supported in future studies, have
clear implications regarding investigations of the etiology of
ADHD. Previous work has suggested multiple cognitive, emo-
tional, and behavioral deficits in ADHD. This has led some re-
searchers to suggest a core deficit that results in these observable
problems (Barkley, 1997; Quay, 1997). However, the multiplicity
of identified deficits is unlikely to be completely explained by a
single etiology, and recent genetic studies have failed to find a
major or dominant genetic link (see Shastry, 2004, for a review).
The present results are consistent with genetic findings and suggest
that researchers should begin to focus on identifying the likely
multifactorial etiology of ADHD and continue using methods that
treat ADHD symptoms as polygenetic quantitative traits (Hudziak,
2001; Hudziak, Wadsworth, Heath, & Achenbach, 1999).

The notion of multiple consistency tests and replication serves
as the foundation for taxometric procedures. The present study
design was rich in consistency tests. These included the use of
eight different indicator sets incorporating a range of methods,
such as academic achievement data, behavioral ratings, and per-
formance on both general neuropsychological tasks (e.g., Wechsler
scales) and tasks more specifically implicated in ADHD (e.g.,
indices derived from continuous performance tests), as well as the
use of three mathematically distinct taxometric procedures and a
variety of different decision rules. The design involved 48 subsets
of analyses, with many permutations of MAXEIG and MAMBAC
analyses and decision rules underlying each indicator subset.

The choice of indicators was guided both by theory (Barkley,
1997; Quay, 1997) and by prior research into the effect sizes of
group differences between ADHD and non-ADHD cases (Frazier
et al., 2004), and the present analyses confirmed the high level of
indicator validity before proceeding with the taxometric analyses.
These selection procedures reduce the possibility that the taxomet-
ric models were misspecified, inadvertently including a set of
indicators not relevant to the construct of ADHD. The investiga-
tion used a large, clinically referred sample that was likely to have
a moderate base rate of ADHD. The investigation also used sim-
ulation results for comparison with research data to enhance the
interpretability of findings. Use of these consistency tests partially

offsets the concern of accepting the null hypothesis of dimension-
ality, because multiple analyses converged on dimensional results.

An additional strength of the present study was its use of an
alternative statistical procedure, latent class analyses, for identify-
ing distinct groups of individuals. LCA provides a safeguard for
identifying whether there are more than two taxa mixed into the
same data set. Other taxometric methods provide rigorous tests of
the one-group (dimensional) versus two-group models but could
produce ambiguous or misleading results if the data contain a
mixture of more than two taxa.

There were several limitations to this study. The sample sizes
for most of the total sample analyses were only slightly larger than
those proposed by other researchers and developers of taxometric
procedures (Meehl, 1995; Schmidt et al., 2004), and the sample
sizes for three of the combined type sample analyses were below
recommended thresholds. The indicator sets used in the present
research did not include all 18 symptoms of ADHD as delineated
in DSM–IV. Thus, as stated previously, a taxon may have been
missed owing to indicator misspecification. However, we believe
that the wide range of indicators used and previous research
demonstrating substantial validity of these indicators reduces the
likelihood of misspecification. Beauchaine (2003) recommended
other candidate indicators for the identification of an ADHD taxon
or differentiation of ADHD subtaxa, including indicators of slug-
gish cognitive tempo and urinary 3-methoxy-4-hydroxyphenyl-
glycol, a norepinephrine metabolite. Some research has also sug-
gested that frontal electroencephalogram activity may differentiate
between individuals with and without ADHD (Monastra et al.,
1999). Future research should examine these candidate DSM–IV
and physiological indicators, ideally in tandem, to determine
whether the present findings suggestive of dimensionality gener-
alize across other important methods for assessing ADHD symp-
toms and correlates.

The present study also used a clinic-referred sample, which
permitted a larger base rate of the clinical diagnosis of ADHD,
thereby circumventing the problem of having too few taxon mem-
bers for identification. However, samples that are more represen-
tative of the population permit greater generalization. Specifically,
very large epidemiologic samples (� 3,000 cases) sufficient to
ensure adequate detection of very low base rates are needed.
Unfortunately, obtaining these samples is extremely costly and
typically prohibits the administration of multiple cognitive mea-
sures, thereby limiting indicator selection. Ultimately, determina-
tion of the latent structure of ADHD will rely on replication in both
epidemiologic samples, in which a few carefully chosen subjective
report indicators are collected, and clinical samples, in which large
numbers of subjective report and objective indicators can provide
comprehensive coverage of possible ADHD markers.

An additional limitation of the present study was that data from
the WAIS–III and WISC–III were treated as a single indicator set.
However, we do not believe this was a substantial problem, for two
reasons. First, the indicators derived from both tests are highly
similar. Second, because of the Flynn effect, the mixture of dif-
ferent versions is likely to have biased the present findings toward
identification of a pseudotaxon and not a dimensional solution.
Therefore, mixing these tests is unlikely to have negatively im-
pacted the present results.

Overall, the present findings suggest that a dimensional ap-
proach to assessment and interpretation may be more appropriate,
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at least in a clinical sample. Even if an ADHD taxon were to
emerge using a different indicator set or sample, the present
findings clearly challenge the widespread clinical practices of
using cognitive ability tests, including specific subtest data (Kauf-
man, 1994), as well as continuous performance tests as methods
for identifying a category of youths at risk for ADHD. Several
studies have questioned the value of cognitive ability tests as
diagnostic measures for ADHD (Watkins, Kush, & Glutting,
1997a, 1997b). The present findings suggest that the failure of
these tests could be attributed to their not being valid indicators of
ADHD status, despite clinical and theoretical arguments to the
contrary. Alternatively, the present findings are also consistent
with the possibility that there is no naturally occurring taxon of
ADHD, and the growing body of evidence is more supportive of
dimensional models of individual differences in attention and
motor activity.
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