These tables illustrate a couple interesting technical issues related to ROC and logistic regression. The tables are reproduced in their entirety in this version, with markup not included in the published version that calls out the teaching points.

Key issues:

- Collinearity of predictors (due to shared source variance)
- Interaction effects
- Clinical interpretability

Executive summary:

- The PCSI self-report ROC is significant and the AUC substantial (as were the *t*-tests and *d* values).
- The PCSI and BRIEF are highly correlated (not surprising shared method variance, similar constructs).
- Putting them into the same block of the logistic regression changes the interpretation of the *b* for each. It's no longer a test of whether the scale predicts the outcome (as the reviewer interpreted it); it's a test of whether the scale makes an incremental contribution above and beyond what both self-report scales are doing. "Team Self-report" is highly significant (see the 2 *df* chi-squared for the block, *p*<.0005), but neither scale is a super-star (or ball hog!) that shines above the other. (The Venkatraman test is a more powerful approach for asking whether one does better than the other; the incremental efficacy is a related issue, but not exactly the same thing.)
- The interaction effect tells us that the effect is stronger in High School for the PCSI, but doesn't mean that it is not significant in the younger age group. There are several ways of looking for whether it still works in the younger. Alison is right that simple slopes (and a test of significance for the slope in the younger group) is one way of doing it. Two alternatives are probably easier and faster in practice (though technically less elegant). I put them in the annotations. One is running the regression again with only the PSCI; the other is subsetting the file and running the ROC for PCSI only in the "High School = no" subsample. Both are quick, and they would be the last bullet point in allaying the reviewer's concern.

	School Problems:				
	Problems: High	Low			Effect
Variable	(n = 63)	(n = 79)	Test statistic	р	size
Age in years				•	
Mean	15.14	14.79	t (140 df) = 1.14	.26	<i>d</i> = .19
SD	1.68	1.89			
Female	n = 28 (44%)	n = 30 (38%)	$\chi^2 (1 df) = 0.61$.44	phi = .07
Race (Caucasian %)	n = 50 (83%)	<i>n</i> = 58 (77%)	$\chi^2 (1 df) = 0.75$.39	phi = .07
Level of schooling (High School)	n = 41 (65%)	n = 49 (62%)	$\chi^2 (1 df) = 0.14$.71	phi = .03
Pre-Injury History					-
ADHD/LD	n = 17 (27%)	n = 15 (19%)	$\chi^2 (1 df) = 1.28$.26	phi = .09
Anxiety/Mood disorder	n = 16 (25%)	n = 16 (20%)	$\chi^2 (1 df) = 0.53$.47	phi = .06
Headaches/migraines	n = 31 (49%)	n = 28 (35%)	$\chi^2 (1 df) = 2.73$.10	phi = .14
At least one of the above	n = 46 (73%)	n = 42 (53%)	$\chi^2 (1 df) = 5.86$.02	phi = .20
At least two of the above	n = 16 (25%)	n = 14 (18%)	$\chi^2 (1 df) = 1.24$.27	phi = .09
All three of the above	n = 2 (3%)	n = 2 (3%)	$\chi^2 (1 df) = 0.05$.82	phi = .02
Injury: sport-related concussion	$n = 54 \ (87\%)$	$n = 61 \; (77\%)$	$\chi^2 (1 df) = 2.26$.13	phi = .13
Injury characteristics					
Loss of consciousness	n = 9 (15%)	n = 7 (9%)	$\chi^2 (1 df) = 1.12$.29	phi = .09
No recall of impact	n = 26 (41%)	n = 22 (28%)	$\chi^2 (1 df) = 2.82$.09	phi = .14
Retrograde amnesia	n = 12 (19%)	n = 11 (14%)	$\chi^2 (1 df) = 0.69$.41	phi = .07
Anterograde amnesia	n = 18 (27%)	n = 14 (18%)	$\chi^2 (1 df) = 2.12$.15	phi = .12
Seizures	n = 1 (2%)	n = 1 (1%)	$\chi^2 (1 df) = 0.02$.89	phi = .01
Days since injury Mean (SD)	18.29 (6.04)	15.81 (6.04)	t (140 df) =2.43	.02	d = 0.41
PCSI Self-Report mean score					
Mean	1.26	.43	t (140 df) =	<.00	d = 1.18
(SD)	(.83)	(.55)	6./8	1	
PCSI Parent Report mean score	(100)	(100)			
Mean The two s	elf-report measures b	ooth produce larg	e effect	<.00	d - 98
sizes com	paring the High and L	ow school proble	ms groups	1	<i>u</i> = .90
(SD)	(1.00)	(····)			
BRIEF Self-Report raw total					
Mean	22.48	7.41	t (140 df) = 6.50	<.00 1	d = 1.12
(SD)	(15.70)	(10.79)	0.00	-	
BRIEF Parent-Report raw total					
Mean	14.37	6.03	t (140 df) =	<.00	<i>d</i> = .63
(SD)	(14 64)	(11.70)	5.//	1	
Evertional Effects Index	(17.07)	(11.70)			
Magn			t (140 dA -	< 00	
wean	3.75	2.10	3.41	<.00 1	<i>d</i> = .48
(SD)	(3.13)	(3.75)			
Cognitive measures (ImPACT/MACS):					

Descriptive Statistics for Clinical and Demographic Variables and Bivariate Tests of Association with Perceived School Problems Status at Visit One (N=142)

RANSOM-EVIDENCE BASED ASSESSMENT OF CONCUSSION

Processing Speed SS					
Mean	90.87	93.52	t (140 df) = .92	.36	<i>d</i> = .16
(SD)	(15.79)	(17.99)			
Memory SS					
Mean	91.75	94.96	t (140 df) = 1.18	.24	<i>d</i> = .19
(SD)	(16.50)	(15.73)			

Correlations among Variables

		High	Pre-injury	PCSI-	PCSI-	BRIEF-	BRIEF-		Processing	Memory
Variable	Female	School	History ^a	Self	Parent	Self	Parent	EEI	Speed SS ^c	SSc
School Problems: High ^b	07 ^d	.03 ^d	.20** ^d	.51*** ^e	.44*** ^e	.50*** ^e	.30*** ^e	.28*** ^e	08 ^e	10 ^e
Gender: Female		.13 ^d	.14 ^d	.25**e	.18*e	.21** ^e	.21** ^e	.09 °	.03 e	.06 ^e
School Level: High Scho	ol		01 ^d	09 ^e	.07 ^e	.11 e	.13 e	.09 °	.17* ^e	.07 ^e
Pre-injury History ^a				.04 ^e	.17*e	04 ^e	01 e	06 ^e	.15 e	.04 ^e
PCSI Self					.58***	<mark>.68***</mark>	.42***	.39***	28***	25**
PCSI Parent	The two self-repo	ort measure	s are highly co	rrelated wit	th each other	.52***	.65***	.30***	14	15
BRIEF Self	- shared source v	variance as	well as measu	ring similar	constructs		.55***	.26**	23**	19*
BRIEF Parent	(incidentally the	narent-vou	th agreement	is excention	ally high ()			.22**	14	15
Exertional Effects Index	(incluentary) the	purche you	th ugreement						16	.11
Processing Speed SS ^c										.52***

Note. ^aPre-Injury History includes diagnoses of ADHD, Learning Disability, Anxiety, Depression, or personal history of headaches/migraines.

^b coded such that low academic problems = 0 and high academic problems = 1

°Standard Score; all others are raw scores, adjusted for retrospective ratings of pre-injury functioning.

^dPhi Coefficient.

^ePoint-biserial correlation; all others are Pearson *r* correlations. *p < .05, **p < .01, ***p < .001, two-tailed. The high correlations among the PCSI and BRIEF scales are consistent with the idea of them being converging measures of the same construct. We didn't report a structural equation model in the paper, but conceptually it helps show what is going on in the later regression models.

Area under the Curve from Receive Operating Characteristic Analyses Identifying Students reporting School Problems at Visit One with Index Tests and Moderators

				95% Confide	nce Interval
Index Test	Area under curve	Standard error	p value	Lower	Upper
BRIEF Self-Report	<mark>.84</mark>	.03	<.001	.78	.91
PCSI Self-Report	<mark>.80</mark>	.04	<.001	.73	.87
PCSI Parent Report	.79 The	two self-report mea	sures l	.72	.87
BRIEF Parent-Report	.74 hot	h produce large effe		.66	.83
Exertional Effects Index	.70	s comparing the High	and I	.61	.78
Cognitive performance:	5120	s comparing the rigi			
Processing Speed	.56	r school problems gr	Jups	.47	.66
Memory	.57	.05	.17	.47	.66

Logistic Regression Model Identifying Students reporting High Levels of Post-Injury School Problems

		В	Standard error	<i>p</i> value	Odds Ratio
Block 0:				1	
Intercept		-0.99	0.54	0.06	0.37
Block 1: $\chi^2 = 7.00$, $p = .0$	7				
Gender (Female)	Putting the two se	lf-report n	neasures in as the sa	ame block pi	oduces a large
School Level (High sc	hool) improvement in pr	rediction.	We could emphasize	e this by add	ing an R ² change
Pre-injury Characteris	tics ^a for the block, thou	ight the ch	ii-squared and p-val	ue are convi	ncing, too.
<mark>Block 2: χ2 = 54.43, p< .</mark>	<mark>001</mark>				
BRIEF Self-Report		<mark>0.03</mark>	0.03	<mark>0.27</mark>	1.03
PCSI Self-Report		0.07	0.55	<mark>0.90</mark>	1.08
Block Entering in the same	block, the b for each is no lon	ger a test o	f the main effect, but	rather the inc	remental effect (or uniq
P effect) of each scale	above & beyond the other. Ne	either being	significant independe	ently tells us th	nat it is a functional tie (a
B no value in giving bo	th or interpreting both in com	bination for	r this dependent varia	ble)	
Block 4: $\chi 2 = 11.74$, $p = .$	003				
High School x PCSI S	elf-Report	<mark>1.87</mark>	0.84	<mark>0.03</mark>	6.47
Pre-injury History x B	RIEF Self-Report	<mark>0.13</mark>	0.06	<mark>0.02</mark>	1.14
Block 5: $\chi 2 = 1.13$, $p = .7$	The significant interaction	offoct for	High School tolls us	that the die	criminativo
Exertional Effects Inc	newer is significantly bett	effection	nigh school tens us	that the us	this we can't tall
Cognitive measures ^b :	power is significantly bette		Juer age group. Jus		this, we call t tell
Processing Speed	whether it shrinks to non-	significanc	e in the lower age g	group. One w	ay of checking
Memory	would be to estimate simp	ble slopes	for the regression. A	Another wou	id be to split the
<i>Note</i> . ^a presence of pre-inju	file and run the ROC separ	ately in th	e young age group.	The second	usually will be
^o ImPACT and MACS Pro	the easier approach, and o	often easie	er for audiences to u	inderstand.	
greater difficulty.					
	Another quick approach w	ould be to	o run the logistic reg	ression agai	n without the
	BRIEF self-report included	. If High Sc	hool is dummy code	ed, then the	b for PCSI is the
	slope for the younger age	group, an	d the interaction is l	how much th	e slope changes
	(improves, since the sign is	s positive)	for High School. Wi	th the BRIEF	excluded, the
	PSCI should be significant	(it will be	getting credit for all	the covariar	nce that was
	collinear with the BRIEF in	the mode	l that is tabled here); but if it isr	i't, that will be
	the same result that we w	ould ident	ify running the ROC	separately i	n the subset.
			-		

An aside about collinearity: The significant correlation between predictors (gray in Table 2) means that they have some "collinearity." There are two ways this can affect the regression results. One is shared prediction, which is what we will see in the later tables. We can think of this as "conceptual collinearity."

The second way is when the collinearity is so high that the regression no longer can produce accurate results. Functionally, the predictors (or sets of predictors) are "identical twins" and the regression can't attribute the prediction to one variable with any confidence. The standard errors become huge, the confidence intervals blow up, and the betas "bounce" around a lot on cross-validation. This is when the tolerance is <.10 (or the R^2 for the overlap with a predictor is >.90). We are a not yet into that scenario here, so we can trust the regression results, and they show that we have "conceptual collinearity" in the sense that two scales from the same informant provide functionally redundant information.

We want to be careful that our presentation doesn't trigger a "kick us here" reaction from reviewers if we mention collinearity.