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Abstract

A historical increase in the number of factors purportedly measured by commercial tests of cognitive ability may result from four
distinct pressures including: increasingly complex models of intelligence, test publishers' desires to provide clinically useful assessment
instruments with greater interpretive value, test publishers' desires to include minor factors that may be of interest to researchers (but are
not clinically useful), and liberal statistical criteria for determining the factor structure of tests. The present study examined the number of
factors measured by several historically relevant and currently employed commercial tests of cognitive abilities using statistical criteria
derived from principal components analyses, and exploratory and confirmatory factor analyses. Two infrequently used statistical criteria,
that have been shown to accurately recover the number of factors in a data set, Horn's parallel analysis (HPA) and Minimum Average
Partial (MAP) analysis, served as gold-standard criteria. As expected, there were significant increases over time in the number of factors
purportedly measured by cognitive ability tests (r=.56, p=.030). Results also indicated significant recent increases in the overfactoring
of cognitive ability tests. Developers of future cognitive assessment batteries may wish to increase the lengths of the batteries in order to
more adequately measure additional factors. Alternatively, clinicians interested in briefer assessment strategies may benefit from short
batteries that reliably assess general intellectual ability.
© 2006 Elsevier Inc. All rights reserved.
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Commercial tests of cognitive abilities have become
increasingly complex. The Wechsler Adult Intelligence
Scales (WAIS, WAIS-R, and WAIS-III) and the Wechsler
Child Intelligence Scales (WISC, WISC-R, WISC-III,
and WISC-IV) are good examples. These scales have
moved from purportedly measuring two aspects of intel-
ligence, verbal and performance abilities (WISC; Wechs-
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ler, 1949; WAIS; Wechsler, 1955; WISC-R; Wechsler,
1974; WAIS-R; Wechsler, 1981), to measuring four cog-
nitive abilities: Verbal Comprehension, Perceptual Orga-
nization or Perceptual Reasoning, Freedom from
Distractibility or Working Memory, and Processing
Speed (WAIS-III; Wechsler, 1997b; WISC-IV; Wechsler,
2003). Unfortunately, the added complexity of commer-
cial ability tests has not resolved controversies regarding
the structure of these batteries. The Wechsler adult intel-
ligence scales are a good example.

Factor analytic studies of the revised Wechsler Adult
Intelligence Scale (WAIS-R) disagreed about the true
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structure of the test with some authors espousing one
factor solutions (O'Grady, 1983), others two factors
(Silverstein, 1982), and still others three factors (Nag-
lieri & Kaufman, 1983; Parker, 1983). Based upon
findings from the latter studies, authors of the most
recent revision, the WAIS-III, decided to add three sub-
tests in an attempt to clarify potential second, third, and
fourth factors (Wechsler, 1997a,b). According to the test
authors, exploratory and confirmatory factor analyses of
the WAIS-III standardization data support the proposed
four-factor model. However, a recent confirmatory
factor analytic study of the WAIS-III using similar me-
thods to those employed by the authors of the test, has
suggested the presence of fewer than four factors (Ward,
Ryan, & Axelrod, 2000).

Controversies regarding factor structure have not
been limited to the Wechsler scales. Several studies have
debated the structure of the 15-subtest Stanford–Binet
Fourth-Edition (SB-IV). Some research has supported
the four factors proposed by test authors with occasional
minor alterations (Boyle, 1989). Other studies have
suggested that two and three factor solutions more
parsimoniously represent the structure of the test
(Gridley & McIntosh, 1991; Kline, 1989). The title of
Thorndike's (1990) article investigating the structure of
the SB-IV “Would the real factors of the Stanford–Binet
Fourth-Edition please come forward?” best captures the
existing confusion regarding the true factor structure of
this instrument. At present, consensus has not been
reached for either the SB-IV or the WAIS-III.

Clearly, the increasing complexity of cognitive as-
sessment batteries has not resolved controversy regard-
ing the structure of these tests. Yet large, elaborate test
batteries, such as the new Woodcock–Johnson Psycho-
Educational Battery Third-Edition (WJ-III) with 20 abi-
lity and 23 achievement subtests, continue to be mar-
keted to clinicians. This observation leaves open the
question of what is driving the movement toward longer,
factorially complex cognitive ability batteries. The pre-
sent paper proposes that several forces have influenced
this trend including: increasingly complex theories of
intelligence (Carroll, 1993; Vernon, 1950), commercial
test publishers' desire to provide assessment instruments
with greater interpretive value to clinicians, publishers'
desire to include minor ability factors that may only be
of interest to researchers, and heavy reliance on liberal
statistical criteria for determining the number of factors
measured by a test. The latter hypothesis is evaluated
empirically in the present study by comparing several
statistical criteria for determining the number of factors
present in current and historically relevant cognitive
ability batteries.
1. Theories of intelligence

Spearman (1904) developed one of the first theories of
the structure of intelligence. He proposed that intelligence
can best be described by a general ability factor and
specific factors represented by each subtest used to mea-
sure intellectual ability. A number of other researchers,
and later Spearman himself, thought that this model was
too simple (for a detailed review see Carroll, 1993). As a
result, more complex models of intelligence were deve-
loped. Some of these models include a hierarchical
structure with g, general ability at the top of the hierarchy,
primary or intermediary factors in the middle stages of the
hierarchy, and specific factors attributed to each subtest at
the bottom of the hierarchy (Cattell, 1963).

Vernon (1950) detailed what is probably the first hie-
rarchical theory of intelligence. His work proposed two
correlated primary abilities comprised of verbal/educatio-
nal and spatial/mechanical abilities. Around the same time
Cattell (Cattell, 1963) posited a two-factor theory of
intelligence with the two factors representing crystallized
(Gc) and fluid (Gf) intellectual abilities (see also work by
Horn, 1968). More recent theories, some of which are
elaborations onCattell's Gf/Gc theory, have suggested the
presence of larger numbers of primary abilities. Carroll's
(1993) three stratum theory is an example of one popular
and extensively researched extension ofGf/Gc theory. His
theory proposes a general ability factor at the top of the
hierarchy, 8 broad ability factors in the middle of the
hierarchy, and approximately 70 narrow abilities at the
bottom of the hierarchy.

Other models of intellectual ability have proposed
factors that are intended to be relatively uncorrelated with
each other, and thus a general ability factor was not
assumed (Guilford, 1967; Thurstone, 1938). These
models have often been called into question based upon
the finding that typically the measures of distinct abilities
in these models show sizeable correlations amongst
themselves and with standard IQ tests, implying a general
cognitive ability factor. However, the lack of empirical
support for uncorrelated intellectual abilities has generally
not diminished the popularity of multiple intelligence
theories. Gardner's (1983) theory ofmultiple intelligences
is probably the most widely known. His theory and others
like it have become popular presumably because they
offer the “politically correct” possibility that an individual
who would not be viewed as intelligent based upon more
traditional models of intelligence could be seen as
possessing other non-traditional intelligences. The popu-
larity of theories espousing a number of separate, mini-
mally correlated or uncorrelated, cognitive abilities may
suggest that commercial tests have becomemore complex
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due to a desire to measure these additional abilities. As-
sessing diverse abilities could theoretically provide a
richer evaluation of the individual, allowing for more
detailed and helpful clinical recommendations. In sum,
the large number of increasingly complex theoretical
models of the structure of intelligence may have led test
developers to try to measure the cognitive abilities des-
cribed by these models.

2. Commercial pressure on test development

Psychological and psycho-educational assessments
have become a big business with psychologists playing
an expanding role in diagnosis and treatment planning. As
psychological assessments have become increasingly
profitable endeavors, so have developing and marketing
psychological tests. This is best exemplified by the nume-
rous psychological test publications in existence fromThe
Psychological Corporation, Western Psychological Ser-
vices, and other publishers. Cognitive ability batteries,
along with personality measures, play a large role in most
psychological assessments and have been consistently
found to be among the most frequently used psycholog-
ical tests (Lees-Haley, Smith, Williams, & Dunn, 1996).
The extensive use of cognitive ability batteries in psy-
chological assessment, an increased market for psycho-
logical assessments in general, a desire to create tests that
are marketable to both clinicians and researchers, and the
desire to increase the reliability of IQmeasuresmay create
a pressure on publishers to market ability tests that mea-
sure everything that other tests measure andmore. This, in
turn, forces other ability test publishers to try to keep pace.
If publishers do not market their instruments as offering
more information than previous versions or other com-
peting instruments, the instruments will likely be viewed
by clinicians and researchers as outdated or insufficient.
More specifically, if test batteries do not include subtests,
or groups of subtests, that clinicians feel improve their
ability to make decisions and provide recommendations,
they are unlikely to be successfullymarketed to clinicians.
Similarly, there may be a pressure on test developers to
include minor, poorly measured, additional factors into
new test revisions in order to market them to researchers
who are interested in examining multiple distinct of abi-
lities at the group level, even if these additional factors are
not clinically useful.

Commercial pressure to market tests with additional
subtests may exist even in the absence of actual research
to substantiate the validity of additional subtests or studies
indicating that inclusion of these subtests allows for the
reliable measurement of additional factors. In fact, very
few studies have supported the reliability and validity of
subtest or profile interpretation (Glutting, Watkins, &
Youngstrom, 2003). Glutting and colleagues (2003)
reviewed several failed attempts to develop subtest pro-
files with predictive validity using the Wechsler Intelli-
gence Scales for Children-Third-Edition (WISC-III). The
conclusion of this review was that, in general, subtest
profiles provided very little incremental validity beyond
estimates of general ability, and that subtest profiles were
poor predictors of various diagnoses. These findings in-
dicate that measurement of additional factors may not be
clinically useful. Rather, inclusion of additional factors
may simply increase the cost to psychologists, who buy
newer assessment batteries to keep upwith the standard of
practice. Additionally, longer, more elaborate batteries are
likely to increase the cost to society when insurance com-
panies and individuals are charged for longer psychological
assessments.

3. Statistical criteria for determining the number of
factors

Empirical studies evaluating the structure of intelli-
gence and the structure of commercial measures of cog-
nitive ability have focused on three basic types of factor
analytic techniques (Carroll, 1993). These include
principal components analysis (PCA), exploratory factor
analysis (EFA), and confirmatory factor analysis (CFA).
PCA and EFA are conceptually similar and share me-
thods for determining the number of factors/components
to retain, therefore these two methods will be discussed
jointly.

PCA and EFA have been used extensively to examine
the structure of human cognitive abilities and the number
of factors measured by commercial ability tests. Both
techniques summarize the relationships between sets of
variables, letting the data drive the analysis. The prin-
cipal components obtained from PCA are simply linear
combinations of the original measured variables. Thus,
PCA has been described as being strictly a data reduction
technique, with no distinction made between common
and unique sources of variance in the measured vari-
ables. EFA, on the other hand, is thought by some to be a
more appropriate technique for identifying latent con-
structs (Fabrigar, Wegener, MacCallum, & Strahan,
1999; Gorsuch, 1983; Widaman, 1993), since EFA
methods parse unique and common sources of variance.
Methodologists have debated the relative utility of PCA
and EFA, with some favoring PCA (Velicer & Jackson,
1990) and others EFA (Widaman, 1993). Although both
may possess advantages in some situations, they fre-
quently produce similar results (Fabrigar et al., 1999).
For this reason, the terms factor and component will be
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used interchangeably, although in the strictest sense they
refer to different analyses.

In both PCA and EFA there are two basic analytic
decisions that a researcher must make, 1) determining
the number of factors to retain and 2) choosing a method
for rotating the retained factors to simple structure.
Deciding on the appropriate number of factors to retain
is probably the most important decision made in EFA
and PCA since simple structure cannot be achieved if
too few or too many factors are subjected to rotation. It
is this decision, and the implications of this decision for
cognitive ability test development and interpretation,
that is the focus of the empirical analyses of the present
paper.

3.1. PCA/EFA decision rules

There are a number of different decision rules avail-
able for determining the number of factors to retain.
These rules are derived from PCA or EFA analyses and
often result in retention of different numbers of factors.
The most commonly employed rules or heuristics in-
clude the Kaiser criterion, Cattell's scree test, the chi-
square statistic resulting from maximum likelihood
factor analysis, and interpretability (for a detailed des-
cription of these techniques and procedures see Kim &
Mueller, 1978; Velicer, Eaton, & Fava, 2000; Zwick &
Velicer, 1986). For the purposes of the present paper a
brief discussion of the advantages and disadvantages of
these techniques is presented, followed by empirical
work comparing these decision rules, and finally metho-
dologists' recommendations regarding use of these
techniques.

The Kaiser criterion is probably the most commonly
used method for determining the number of components
to retain. The justification and description of this method
was detailed by Kaiser (1960) and simply involves
retaining components obtained from PCA with eigenva-
lues greater than 1.0. While some view this criterion as
simply establishing a lower bound for the number of true
factors in a data set (Kim & Mueller, 1978), it has been
most frequently used as a criterion for determining the
number of factors. When used in the latter fashion, the
Kaiser criterion is advantageous in that it can be easily and
objectively applied. However, the rule has been found to
perform poorly in simulation studies, with occasional
underfactoring and more frequently overfactoring (for a
discussion of this issue see Fabrigar et al., 1999).

Cattell's (1966) scree test is almost as frequently im-
plemented as the Kaiser criterion. This test involves
plotting all of the eigenvalues obtained from PCA and
drawing a line through the smallest values. Those eigen-
values judged to be above this line are retained. Cattell's
scree test has been criticized by some individuals as being
too subjective. Supporting this position, one published
study reported low interrater reliability (Crawford &
Koopman, 1979), while other studies have found good
performance when strong common factors are present
(Cattell & Vogelmann, 1977; Hakstian, Rogers, & Cattell,
1982). Rater disagreement typically occurs in one of three
situations: when the plot of all eigenvalues results in a
gradual slope with no obvious breaking point in the line,
there is more than one break point in the line, or more than
one line can be drawn through the smallest eigenvalues
(Zwick & Velicer, 1986).

The chi-square statistic resulting from maximum
likelihood EFA is logically similar to Cattell's scree test
in that the focus of the analysis is the equality of eigen-
values leftover after interpretable components are ex-
cluded. This technique comprises retaining successive
factors until the chi-square statistic becomes non-signi-
ficant. At this point the null hypothesis of equality of the
remaining eigenvalues is no longer rejected. While this
method is advantageous in that a definite stopping point
can be easily identified, it has been criticized for leading
to retention of too many factors. Overfactoring is parti-
cularly problematic when sample sizes are large (Fab-
rigar et al., 1999).

Interpretability generally refers to retaining only
those components that make sense to the researcher
(Fabrigar et al., 1999; Gorsuch, 1983). While this may
mean use of several of the above criteria in combination
with subjective judgement, it may also refer to sub-
jective judgment alone. Interpretability has been fre-
quently employed in factor analytic studies of cognitive
ability tests, where authors sometimes refer to an exa-
mination of the “meaningfulness” of rotations of var-
ying numbers of factors (for an example see Wechsler,
1991). Interpretability is fraught with difficulties when
used in determining the number of cognitive ability
factors. First, this method is extremely subjective and
what is interpretable to some may not appear inter-
pretable to others. Secondly, subjectivity makes it likely
that confirmation bias will affect the judgment of
researchers employing this method. Investigators may
be willing to halt further analyses when their expecta-
tions have been met, even though the true structure of
the data has not been approximated. Lastly, in deter-
mining the structure of cognitive ability tests, vast ar-
rays of intelligence theories are available to interpret the
results of exploratory analyses. This leads to an
undesirable situation where almost any solution can
be interpreted according to one or more of the existing
theories. For these reasons, and the inherent difficulty in
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operationalizing this criterion it was not evaluated in the
present study.

Two other decision rules exist for determining the
number of components or factors to retain: minimum
average partial (MAP) analysis described by Velicer
(1976) and Horn's (1965) Parallel analysis (HPA). These
rules have been used infrequently in factor analytic lite-
rature. This is probably due to a general lack of knowledge
regarding these techniques outside of the methodological
community, the fact that they are not included in com-
monly used statistical programs, and the laborious com-
putations needed to perform these analyses. MAP is an
iterative procedure in which successive partial correlation
matrices are examined. Initially, the average squared
correlation of the observed correlation matrix is comput-
ed. Then, successive components resulting from PCA are
partialed from the original matrix beginning with the first
component. At each step, the average squared partial
correlation is computed and the step at which the mini-
mum average squared partial correlation is observed re-
presents the number of components to retain. For
example, if after partialing out the first and second com-
ponents the minimum average squared partial correlation
is reached, two factors are retained (see Velicer, 1976 for a
description of the MAP procedure).

HPAwas originally described as an adaptation of the
Kaiser criterion (Horn, 1965). This procedure was
developed to account for the fact that, for a given
sample, principal components analysis of randomly
generated, uncorrelated variables will result in initial
eigenvalues exceeding 1.0 and later eigenvalues drifting
below 1.0. Deviation of the eigenvalues from 1.0 is a
result of sampling error of the observed correlations. In
these situations implementations of the Kaiser criterion
will lead to one or more factors being retained even
though none of the variables are truly correlated. HPA
corrects for this by comparing the eigenvalues obtained
from PCA of the observed correlation matrix to
eigenvalues obtained from PCA of a randomly generated
correlation matrix. The randomly generated matrix is
based upon the same sample size and number of
variables as the observed correlation matrix. Compo-
nents derived from the observed (real data) matrix are
only retained if the eigenvalues for those components are
larger than the eigenvalues derived from the randomly
generated matrix.

Glorfeld (1995) noted that the above methodology
was generally accurate but occasionally resulted in
retention of more components than warranted. As a
result of this observation, he further refined and
improved HPA by generating several sets of eigenvalues
from random correlation matrices, instead of only one
set. From the multiple sets of random generated
eigenvalues, 95% confidence intervals are constructed.
Only components from the actual data that have
eigenvalues that are larger than the upper bound of the
95% confidence interval of randomly generated eigen-
values are retained. This addition to HPA ensures that
poorly defined components are not included.

3.2. Comparison of available decision rules

As a result of the multitude of decision rules available
and an apparent lack of consensus over which techniques
are most appropriate, factor analysis has been viewed by
some researchers and statisticians as more subjective
than other statistical techniques (Tabachnick & Fidell,
1996). However, Monte Carlo simulations involving
data with a known structure have found MAP and HPA
to more accurately recover the true number of existing
factors (Zwick & Velicer, 1982, 1986). More conven-
tional decision rules were found to inconsistently recover
the true number of factors (Cattell's scree test) or led to
overfactoring (the Kaiser criterion and the chi-square
statistic). Results of these methodological studies led
Velicer, Eaton, and Fava (2000) to recommend the use of
HPA and MAP for determining the number of compo-
nents. The other decision rules were not recommended as
stand alone techniques. Unfortunately, results of studies
examining these criteria have done little to influence
current factor analytic practice. In fact, to the authors'
knowledge neither MAP nor HPA has been used in the
development of currently or previously available
cognitive ability tests. Rather, more conventional criteria
that may lead to over-extraction have been employed,
supporting the notion that ability tests are being
overfactored.

3.3. CFA decision rules

The advent of CFA and the apparent preference of this
technique over EFA/PCA have led authors of recent
commercial tests of cognitive ability to rely heavily on
these methods (McGrew & Woodcock, 2001; Thorn-
dike, Hagen, & Sattler, 1986; Wechsler, 1991, 1997b).
CFA methods often utilize maximum likelihood estima-
tion, thus unrestricted CFA models are mathematically
identical to EFA using maximum likelihood estimation.
CFA differs conceptually from EFA and PCA in that
researchers using confirmatory methods specify the
number of factors prior to the analysis. Ideally, a series of
CFA models differing in factor complexity are specified
and evaluated in order to determine the fit of the models,
and consequently, the number of factors measured by the
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data. Several indices are typically used to determine the
fit of CFA models, including the chi-square statistic
resulting from maximum likelihood estimation techni-
ques and other statistics based upon chi-square. Two
statistics which are frequently used in CFA were
examined in the present study, the Comparative Fit
Index (CFI; Bentler, 1988) and the Tucker–Lewis Index
(TLI; Tucker & Lewis, 1973). Both indices are
adjustments on chi-square for the degrees of freedom
of the model and previous empirical work has suggested
that values of CFI and TLI≥ .95 indicate good to
excellent model fit (Kline, 1998).

3.4. EFA/PCA vs. CFA

We are unaware of any published empirical (Monte
Carlo) investigations comparing CFA fit statistics in the
recovery of the true number of factors in a data set.
However, in previous studies comparing EFA and PCA
decision rules, Bartlett's chi-square statistic frequently
overfactored (Zwick & Velicer, 1986). This was
particularly true when large sample sizes and conven-
tional alpha levels ( pb .05) were examined, as they
frequently are in factor analytic studies of cognitive
ability tests. Although Barlett's chi-square is not the
same computationally as the chi-square resulting from
maximum likelihood CFA, it is logically identical to
these tests. This suggests that heavy emphasis on CFA
and the chi-square statistic over recent years may have
resulted in increased overfactoring of more current
ability tests.

Other empirical work has provided evidence that CFA
may be a less desirable technique for determining the
number of factors measured by a data set. Many appli-
cations of CFA techniques involve specification
searches, processes bywhich an initial model is modified
in order to improve its fit. MacCallum and colleagues
(MacCallum, 1986; MacCallum, Roznowski, & Neco-
witz, 1992) found that specification searches in covari-
ance structure modeling often do not uncover the correct
population model. This appears to be especially true in
situations where the researcher's initial model is not
close to the true model, when the search is terminated
upon finding the first statistically plausible model, when
small samples are used, and when the investigator cannot
place valid restrictions on possible modifications
(MacCallum, 1986). Based upon these findings, Mac-
Callum and colleagues recommended using alternative a
priori models. However, this approachmay be difficult to
implement when examining the structure of cognitive
ability tests due to the large number of intelligence
theories from which to generate alternative models.
4. The present study

For the previously discussed reasons, CFA methods
and more conventional EFA/PCA based decision rules
may be inappropriate for determining the number of
factors measured by ability tests, leading to retention of
too many factors. Yet, these methods have been used
exclusively to determine the structure of ability tests,
suggesting that recent ability tests may be overfactored.
The purpose of the present study is to empirically eva-
luate the number of factors measured by current and
historically relevant cognitive ability tests using recom-
mended criteria (MAP and HPA), more conventional
EFA/PCA decision rules, and CFA statistics with un-
known accuracy. In particular, the present study will
examine whether the observation of historical increases
in the length and complexity of commercially available
cognitive ability tests is statistically reliable, if recent
increases in the overfactoring of ability tests have oc-
curred, and (if overfactoring is observed) whether the
use of liberal statistical criteria has influenced recent
increases in overfactoring. The latter hypothesis will be
evaluated in three ways. First, a qualitative examination
of the statistical criteria used by recent ability tests will
be performed. Secondly, the number of factors retained
by HPA and MAP will be compared to the number of
factors retained by more conventional criteria to deter-
mine whether these criteria overfactor. Finally, analyses
will examine whether the number of factors retained
using commonly implemented decision rules approx-
imates the number of factors proposed by test authors.

5. Method

5.1. Commercial tests

Historically relevant and recent commercial tests of
cognitive ability examined in this study were the:
Wechsler Intelligence Scale for Children-Original
Version, Revised, Third-Edition, and Fourth-Edition
(WISC; Wechsler, 1949; WISC-R; Wechsler, 1974;
WISC-III; Wechsler, 1991; WISC-IV; Wechsler, 2003),
Differential Ability Scales (DAS; Elliott, 1990), Stan-
ford–Binet Fourth-Edition (SB-IV, 15 subtests; Thorn-
dike et al., 1986), Kaufman Assessment Battery for
Children (K-ABC, 8 subtests, ages 7–12; Kaufman &
Kaufman, 1983), Wechsler Primary and Preschool Scale
of Intelligence-Original Version, Revised, and Third-
Edition (WPPSI; Wechsler, 1967; WPSSI-R; Wechsler,
1989; WPPSI-III; Wechsler, 2002), Woodcock Johnson-
Revised and Third Edition (20 subtests from the
cognitive batteries, WJ-R; Woodcock & Johnson,
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1989; WJ-III; Woodcock, McGrew, & Mather, 2001),
and Wechsler Adult Intelligence Scale-Original Version,
Revised, and Third-Edition (Wechsler, 1955, 1981,
1997b). Only 20 subtests from the WJ-R cognitive
assessment battery could be analyzed due to missing
correlations for one subtest in the subtest inter-
correlation matrix of the test manual. Correlation
matrices were based upon all individuals reported in
the standardization samples for each of the batteries
examined except for the SB-IV, where pairwise correla-
tions reported by Boyle (1989) were used to fill in the
matrix reported in Table 6 of the test manual1

(Thorndike et al., 1986). In situations where the test
manual did not report an average correlation matrix
across groups (K-ABC, WJ-R and WJ-III), correlation
matrices were averaged using Fisher's z-transformation
to produce an average inter-subtest correlation matrix.
This procedure used only age groups receiving all of the
subtests. For the WJ-R and WJ-III, the minimum
number of subjects administered any subtest was used
to estimate the N for the averaged matrix (WJ-R,
N=499; WJ-III, N=2034). The correlation matrices
reported in the WISC and WAIS manuals were averaged
in order to obtain one inter-subtest correlation matrix
based upon all individuals reported in the component
matrices. Previous versions of the Stanford–Binet
Intelligence Scales and the Woodcock–Johnson cogni-
tive assessment battery could not be analyzed because
correlation matrices for these scales were not available.2

5.2. Statistical tests and decision rules

For each ability test, PCA, maximum likelihood
EFA, and unrestricted one factor model CFA's were
performed. Results of these analyses were used to
determine and evaluate several decision rules. Kaiser's
criterion, retaining any components with eigenvalues
greater than 1.0, was determined using the results of
PCA analyses performed in SPSS 11.0 (2002). Cattell's
scree test was implemented by performing Principal
Axis Factoring to extract eigenvalues resulting from
squared multiple correlations in the input matrix using
SPSS 11.0 (SPSS, 2002). Then, eigenvalues were
1 Intersubtest correlations for the SB-IV were obtained from Table
6.1 of the manual. Missing correlations were derived from values
obtained from other reported matrices. The median correlations
analyzed were based upon different numbers of subjects so that some
correlations were based upon less than 100 people while others were
based upon 5000 people.
2 Copies of the matrices examined in the present study can be

obtained from the first author.
plotted using Microsoft Excel. Four raters naïve to the
purpose of the present study rated each graph. They
were instructed to find the break in the line resulting
from the lowest values and then count the number of
data points falling above the line. Inter-rater reliability
was computed using model two of the intraclass corre-
lation coefficient which accounts for mean differences
between raters (Shrout & Fleiss, 1979). Average inter-
rater reliability was adequate (ICC (2,4)= .75; the se-
cond number indicates the number of raters averaged),
but individual ratings were quite unreliable (ICC (2,1)=
.43), indicating that an average rating was required for
further analyses. Inspection of the ratings revealed
particular difficulties with three measures, the Wood-
cock–Johnson-III, the Differential Ability Scales, and
the Stanford–Binet IV. For these measures, ratings
differed by as much as 3 (1 vs. 4 factors estimated). This
appeared to be due to the odd shape of the plot of
eigenvalues (multiple breaks in the line or gradual slope)
for both of these measures and further reinforces the
difficulty with implementing Cattell's scree test for
measures without strong common factors.

HPA was computed using Watkins (2000) software.
For each HPA analysis, 95% confidence intervals for the
mean of 100 sets of randomly generated eigenvalues
were created, based upon Glorfeld's (1995) extension
on Horn's (1965) original analysis. Any components
resulting from PCA that were larger than the upper
bound of these confidence intervals were retained. The
chi-square rule was derived by performing a series of
maximum likelihood EFA's with successively larger
numbers of factors being retained in each set of analy-
ses. The point at which the chi-square value resulting
from these analyses became non-significant was taken
as the number of factors. MAP analyses were performed
as described earlier using SPSS 11.0 macro language
(O'Connor, 2000).

Computation of CFI and TLI occurred in stages. First
one-factor unrestricted maximum likelihood CFA's were
performed for each test using AMOS (Arbuckle, 1999).
This was done to obtain the value of chi-square and the
degrees of freedom for the independence model. Then,
increasingly factorially complex, unrestricted models
were performed using maximum likelihood EFA in
SPSS 11.0 (2002). This was done to obtain the chi-
square and degrees of freedom for these models. The chi-
square values obtained for the independence model and
the chi-squares values obtained from the various unres-
tricted models were used to compute CFI and TLI. The
points at which CFI and TLI became greater than .95
were taken as the number of factors retained for these
criteria, based upon previous research suggesting that
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values in this range indicate good to excellent fit (Kline,
1998; Tabachnick & Fidell, 1996).

6. Results

Table 1 presents test publication date, test length,
number of factors purportedly measured, and the num-
ber of factors indicated by each statistical criterion for all
of the commercial tests of cognitive ability. As expected,
a moderate, although non-significant, linear relationship
between test publication date and test length, R2 = .11, r
(14)= .33, p=.236, was observed (see Fig. 1, panel A).
The linear relationship between publication date and the
number of factors purportedly measured by these tests
was large in magnitude and significant, linear R2 = .31,
r=.56, F(1,13)=5.91, p=.030. A significant quadratic
trend was also observed, quadratic R2 = .51, ΔR2 = .20,
r=.45, F(1,12)=4.88, p=.047 (see Fig. 1; panel B).
The difference between the linear relationships between
publication date and test length and publication date and
the number of factors purported approached significance
in spite of the small number of observations, t(12)=
1.81, p=.096, suggesting that the number of factors
purportedly assessed by cognitive tests has grown more
quickly than the length of these tests (Cohen & Cohen,
1983). It should be noted that removal of the two mea-
sures with extremely high values for purported number
of factors (WJ-R and WJ-III, both 7 factors proposed)
decreases the magnitude of the quadratic effect des-
cribed above, quadratic R2 = .09, r=.30, F(1,10)=1.89,
Table 1
Test publication year, test length, number of factors measured, and the numbe
test of cognitive ability

Test Publication year Subtests Factors proposed HPA

WISC 1949 12 2 2
WAIS 1955 11 2 1
WPPSI 1967 11 2 2
WISC-R 1974 12 2 2
WAIS-R 1981 11 2 1
K-ABC 1983 8 2 2
SB-IV 1986 15 4 1
WJ-R 1989 20 7 3
WPPSI-R 1989 12 2 2
DAS 1990 6 3 1
WISC-III 1991 13 4 2
WAIS-III 1997 13 4 1
WJ-III 2001 20 7 3
WPPSI-III 2002 12 3 2
WISC-IV 2003 15 4 2
Mean(S.D.) 1983.8(16.4) 12.7(3.8) 3.3(1.7) 1.8(0.7)

⁎ For these values the degrees of freedom were used up (dfb1) before the c
number of factors retained prior to using up degrees of freedom. The scree te
from four independent judges naïve to the purported number of test factors.
p=.20, but the linear effect remains large and signifi-
cant, R2 = .40, r=.63, F(1,11)=8.98, p=.012. Addition-
ally, the ratio of test length to factors proposed (no. of
subtests/no. of factors proposed) was significantly and
strongly negatively correlated with test publication date,
R2 = .46, r(14)=− .68, p=.005. After 1983, 3 of the
8 measures did not even include enough subtests to
adequately identify each factor (3 subtests per factor;
Fabrigar et al., 1999).

Based upon previous research indicating that HPA
and MAP accurately recover the true number of factors
in a data set (Zwick & Velicer, 1986), analyses compa-
ring the number of factors determined by HPA and MAP
and the number of factors purportedly measured by
cognitive ability tests were performed. These analyses
were used to evaluate the prediction that commercial
cognitive ability tests have been overfactored. The
number of factors retained using HPA and MAP was
significantly less than the purported number of factors
measured by the tests, t(14)=4.08, p=.001 and t(14)=
4.01, p=.001 respectively. On average, the number of
factors indicated by MAP and HPA did not differ, t(14)=
1.29, pN .20; however these two methods showed poor
agreement, ICC (2,2)= .21 (Shrout & Fleiss, 1979).

To examine whether there has been a historical
increase in the overfactoring of ability tests, difference
scores were computed by subtracting the number of
factors indicated by HPA and MAP from the number of
factors purportedly measured by the tests. Consistent
with prediction, a marginally significant relationship
r of factors retained using each statistical criterion for each commercial

MAP Scree (avg.) Kaiser ×2 CFI TLI

2 2 2 3 2 2
1 2 1 4 2 2
1 2 2 3 2 2
1 3 2 6 2 2
2 1.25 1 6 2 2
1 2 2 3 2 2
1 1.75 2 10 ⁎ 3 4
1 2.75 5 11 5 9
2 2 2 4 2 2
1 1.25 1 3 ⁎ 2 3 ⁎

2 3.25 3 5 3 3
2 2.50 2 7 3 4
2 2.50 3 10 4 5
2 2.25 2 6 2 2
2 2 2 8 3 3
1.5(0.5) 2.17(.56) 2.1(1.0) 5.9(2.8) 2.6(0.9) 3.1(1.9)

riteria was satisfied so the values displayed are for one greater than the
st estimates are based on PAF extraction, and are the average of ratings



Fig. 1. Panel A presents the linear relationship between test publication
date and test length. Panel B presents the linear and quadratic relation-
ships between publication date and the number of factors purportedly
measured by the test.
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was found between test publication date and the
difference between the number of factors indicated by
test authors and the number of factors indicated by HPA,
r(14)= .51, p= .055. The relationship between test
publication date and the difference between the pur-
ported number of factors and the number of factors
indicated by MAP was also large and showed a trend
toward significance, r(14)= .40, p= .146.

The hypothesis that conventional criteria lead to over-
extraction was evaluated by comparing the number of
factors retained by Cattell's scree test, Kaiser criterion,
chi-square statistic, CFI, and TLI and the number of
factors retained byHPA andMAP. The number of factors
retained by Kaiser's criterion was marginally signifi-
cantly larger than the number of factors retained by HPA
and MAP, t(14)=2.09, p=.055 and t(14)=2.07, p=.057
respectively. Cattell's scree test, chi-square statistic, CFI,
and TLI all retained a larger number of factors than
indicated by HPA and MAP, smallest t(14)=2.41, p=
.030. Even if the Woodcock–Johnson data are removed,
the number of factors purported by HPA and MAP is
substantially lower than other criteria (smallest t(12)=
1.76, p=.104, Cohen's d= .50) and approaches signif-
icance in spite of poor power.

To further examine whether the use of liberal criteria,
has led to recent increases in the overfactoring of ability
tests, both qualitative and quantitative analyses were
performed. Table 2 presents test publication date and the
criteria used to determine the number of factors measured
by each test. Beginning with the publication of the K-
ABC in 1983, rules resulting from either exploratory or
confirmatory approaches or both were used to determine
the structure of all subsequent ability tests. Combining
information from Tables 1 and 2, following publication of
the K-ABC in 1983 (the point at which factor methods
began to be used extensively in choosing the number of
factors measured), the WPPSI-R is the only test whose
purported number of factors matches the number of
factors indicated by MAP and HPA. Interestingly, the
WPPSI-R was also the only test that relied exclusively on
Kaiser criterion for determining the number of factors
measured, and the Kaiser criterion was shown earlier to
perform the closest to MAP and HPA of any of the
comparison criteria (see Table 1). Interestingly, while
previous simulationwork has indicated that Cattell's scree
test is often fairly accurate, but difficult to score in some
cases, in the present study it was found to perform
similarly to the Kaiser criterion t(14)=−0.17, p=.866.

Quantitative evaluation was also performed to deter-
mine whether the more conventional criteria suggested
retention of the same number of factors, on average, as
the number indicated by test authors. Cattell's scree test,
Kaiser criterion, and CFI all suggested retaining sig-
nificantly less factors than the number proposed by the
tests' developers, smallest t(14)=2.86, p=.013. The
number of factors suggested by chi-square was signif-
icantly larger than the number of factors purportedly
measured by the tests, t(14)=6.15, pb .001, while the
number of factors indicated by TLI did not differ
significantly from the number of factors suggested by
test authors, t(14)=0.90, p=.384. Examination of the
technical manuals for recent commercial ability tests
indicated that, in most instances, a number of different
criteria were used to determine the number of factors
measured by these tests, including rules based upon EFA
and CFA analyses. Therefore, the number of factors
retained by each of the more conventional criteria were
averaged and compared to the purported number of



Table 2
Publication year, administration time (min), and criteria used to determine the number of factors measured for each ability test

Test Publication year Administration time (min) A priori theoretical considerations EFA/PCADecision rules CFA

WISC 1949 None reported ×
WAIS 1955 None reported ×
WPPSI 1967 62 ×
WISC-R 1974 75 ×
WAIS-R 1981 75 ×
K-ABC 1983 80 × × ×
SB-IV 1986 75 × ×
WJ-R 1989 100 × × ×
WPPSI-R 1989 62 × ×
DAS 1990 53 × × ×
WISC-III 1991 73 × × ×
WAIS-III 1997 80 × × ×
WJ-III 2001 100 × ×
WPPSI-III 2002 69 × × ×
WISC-IV 2003 73 × × ×
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factors. The number of factors retained based upon this
average did not differ from the number of factors chosen
by test authors, t(14)=0.75, p= .466.

7. Discussion

Several important findings emerged from the present
study. As predicted, commercial ability tests have become
increasingly complex. While the length of these tests has
risen only moderately, the number of factors purportedly
measured by these tests has risen substantially, possibly
even exponentially. It should be noted, however, that the
possibility of an exponential increase in the number of
factors purportedly measured may be due to inclusion of
two outliers, the WJ-R and WJ-III. Possibly even more
convincingly, the ratio of test length to factors purported
has decreased dramatically. These trends suggest that test
authors may be positing additional factors without inclu-
ding a sufficient number of subtests to measure these
factors. When more accurate, recommended, statistical
criteria were examined commercial ability tests were
found to be substantially overfactored. This held true even
when less accurate (Kaiser criterion) and potentially
subjective (Cattell's scree test) criteria were used.

Results of the present study also suggest that over-
factoring of ability tests may be worsening, as the dis-
crepancy between the purported number of factors and the
number indicated by MAP and HPA has risen over time
and the ratio of subtests to factors purported has decreased
substantially as well. While commercial pressures and
increasingly complexmodels of human cognitive abilities
are likely contributing to these recent increases, these
explanations were not investigated in the present study.
Rather, evaluation centered on the hypothesis that test
developers have been determining test structure using
liberal, and often inaccurate, statistical criteria. This
hypothesis was supported by three findings. First, tests
developed in the early-to-mid 1980s up to the present used
the more conventional, and often inaccurate or subjective,
criteria (Kaiser criterion andCatell's scree test) alongwith
CFA-based indices. In contrast, none of the more recent
ability tests usedHPA orMAP to determine the number of
factors measured. Secondly, all of the more conventional
statistical criteria evaluated in the present study (both CFA
and EFA-based indices) suggested retention of more
factors than proposed by HPA and MAP. Lastly, the
number of factors retained using a combination of
Cattell's scree test, Kaiser criterion, chi-square, CFI, and
TLI approximated the number purported by test authors.
The latter evidence was not conclusive, however, since
specific differences were found between the number of
factors proposed by test authors and the number indicated
by Cattell's scree test and Kaiser criterion (fewer factors
retained), and CFI and chi-square (more factors retained).

These specific differences leave two possibilities. It
may be the case that either the number of factors pur-
portedly measured by the tests was based only on the
TLI or other CFA fit indices, or that combinations of fit
indices and decision rules were used to determine the
number of factors. The latter possibility appears more
likely. Examination of the technical manuals for the
more recent ability tests indicated that most tests used
more than one criterion to determine structure, with each
test using slightly different combinations of analyses
and decision rules (see Table 2). The use of combina-
tions of criteria makes it likely that the most liberal rule
(chi-square statistic) was offset by consideration of the
least liberal rule (Kaiser criterion).
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The present study was the first to the authors' know-
ledge to compare the performance of HPA and MAP to
CFA-based indices. That fact that chi-square retained
significantly more factors than HPA and MAP was not
surprising, since previous empirical work has found this
rule to overfactor (Zwick & Velicer, 1986). However, it
was interesting that both CFI and TLI suggested retention
ofmore factors thanHPA andMAP. This finding suggests
that these indices lead to overextraction. It is possible that
other CFA-based indices (such as AIC, BIC or RMSEA)
may be more useful in determining the number of factors.
While these statistics were not used to derive the publi-
shed factor structures examined in the present study, these
indices should be examined in future attempts to derive
the structure of cognitive batteries.

Monte Carlo studies comparing CFA-based indices to
HPA and MAP are needed to determine whether CFA
indices do, in fact, lead to retention of too many factors.
The present study also found poor agreement between
MAP and HPA. This is in contrast with other unpublished
work we have performed using these criteria and may be
due to the restricted range observed in this study (range 1–
2 for MAP and 1–3 for HPA with only one analysis
indicating 3). Further, MAP and HPA suggested retention
of approximately the same number of factors on average,
and only disagreed by two factors on one occasion. Clear-
ly more research is needed to determine the situations in
whichMAP andHPA aremost effective. Used in conjunc-
tion they will, at worst, significantly reduce the number of
plausible structures to be investigated.

7.1. Implications for future test development and
clinical practice

Recent increases in overfactoring have important
implications for future test development. Authors of
future cognitive ability batteries will have two basic
choices. They can continue to attempt to measure
additional aspects of cognitive ability beyond g or they
can focus on developing shorter measures that provide
estimates of general ability, and possibly one or two
additional factors. Those that wish to measure more
aspects of cognitive ability will need to increase the
length of these batteries beyond the length of present
assessment batteries. Presently, the rate of increase in the
number of factors purportedly measured by these tests is
much greater than the rate of increase in test length.
Reversing this trend will require use of decision rules
that accurately determine the number of factors
measured as well as inclusion of a number of subtests
that adequately measure additional dimensions and do
not load significantly on other dimensions.
Methodologists have stated that at least three indicators
are needed to identify a factor and four are needed to
determine if a factor is over-identified (Fabrigar et al.,
1999; Velicer et al., 2000). Many current ability tests do
not meet these requirements. Two examples are the
WAIS-III and the DAS. Currently, the WAIS-III includes
three 3-subtest factors and one 2-subtest factor, while the
DAS includes three 2-subtest factors in the core cognitive
battery. In each case, all of the factors fall short of the four
indicators recommended by methodologists. In fact, the
DAS does not even include enough subtests in the core
battery to examine the proposed structure. Having a small
number of indicators, measuring one or more of the
factors in a test battery, results in several problems. The
most clinically important of these are the unreliability of
factor scores and resulting difficulties in establishing
predictive validity.

7.1.1. Reliability
The minimum level of internal consistency reliability

required to make decisions about individuals is generally
thought to be .85–.90 (Nunnally & Bernstein, 1994;
Rosenthal & Rosnow, 1991). In situations where only a
few indicators are used to measure each factor, the
reliability of factor score comparisons is likely to be
insufficient for making decisions about individuals. This
is due to the fact that such comparisons are typically based
upon a difference score and difference scores often have
lower reliability than their parent scores. At present, even
the most reliable factor score comparisons from the
WAIS-III and DAS fall short of this level. Using the
formula from Streiner and Norman (1995) for the
reliability of a difference score, the reliability of WAIS-
III and DAS factor score comparisons range from .76 to
.86 and .73 to .80, respectively. As a result, the com-
parisons between factor scores, that clinicians routinely
use to make decisions, lack sufficient reliability.

Increasing the length of theWAIS-III by 5 subtests and
the DAS by 6 subtests, so that each index has 4 indicators,
enhances the reliability of factor score comparisons.
Using the Spearman–Brown prophecy formula for esti-
mating the reliability of a longer test, one can estimate the
reliability of factor score comparisons based upon a larger
number of indicators (Streiner & Norman, 1995). The
reliability of lengthened WAIS-III and DAS factor score
comparisons is estimated to range from .87 to .91 and .87
to .90. While these are not huge increases, these estimates
should be viewed as conservative because the reliability
of score differences could be greatly enhanced by adding
subtests with greater specificity. Nonetheless, these esti-
mates put comparisons for theWAIS-III andDAS close to
or above the recommended levels of reliability. In both
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cases, adding indicators to the existing factors results in
significant improvements in the reliability of factor score
interpretations, on average an increase in true score
variance of 7% for the WAIS-III and 12% for the DAS.

7.1.2. Validity
Establishing predictive validity is essential for

justifying the extra time and effort required in giving
extensive test batteries. Yet, the less than desirable
reliability of current factor-score comparisons makes it
difficult to establish validity. Consistent with this,
research has suggested that commonly used factor scores
from commercial tests have had a disappointing track
record, historically, in terms of demonstrating divergent,
incremental, or predictive validity (Glutting, Young-
strom, Ward, Ward, & Hale, 1997; Moffitt & Silva,
1987). Yet, it is not clear whether these findings have
resulted from poor measurement of additional factors
(i.e. overfactoring) or if additional measurement does not
provide information. Results of the present study suggest
that previous failures in establishing incremental validity
may be due to the fact that many of the factors measured
in these studies are poorly defined and lacking in
specificity. Future research in this area should attempt to
improve the measurement of additional ability factors.
This will necessarily involve inclusion of larger numbers
of subtests, with sufficient reliability and specificity,
tapping additional cognitive abilities. Future work
should also employ more accurate statistical techniques
for determining the number of factors measured by
assessment batteries, such as HPA and MAP. This will
help ensure that failure to find incremental validity is not
a result of poorly defined factors.

7.1.3. Cost
Longer, more carefully designed, test batteries will

undoubtedly provide reliable assessment of additional
ability factors. Unfortunately, however, movement toward
lengthier assessment tools will also result in substantial
increases in cost to the consumer. Glutting and colleagues
(2003) describe how longer test batteries yield increased
administration, scoring, and report writing time. To de-
monstrate the increased cost of longer assessments, they
computed that an hour increase in the current length of
school-related assessments would result in a $55,000,000
increase in costs to the US public, K-12 educational
system. Using the numbers provided by Glutting et al.
(2003), which are based upon the average number of
school psychological evaluations performed per year, and
the mean administration time computed from Table 2, the
cost of current intellectual assessment batteries to the
educational system is approximately 1.25 h admi-
nistration×$33.33 per hour×72 assessments per year×
23,000 practitioners=$68,993,100 per year. Psychometri-
cally sound measurement of additional ability factors will
probably require increasing the length of existing batteries
by at least 1/2 the current length and in some cases doub-
ling the length of existing batteries. As a result, the cost to
the education system will increase. If one assumes that
increasing the length of existing batteries by 1/2 the current
length will also increase administration time by 1/2 the
current length, then the cost of these longer batteries to the
education system will be $103,489,650 per year, an
increase of $34,496,550 per year over current assessment
instruments.

These numbers suggest that the benefits of longer
assessments are probably outweighed by the substantial
costs. Future research employing more reliable factor
score comparisons may substantiate the validity of
additional measurements and thereby shift this cost/be-
nefit ratio. However, validity evidence will not eliminate
the need for briefer, more frugal measures of general
ability in some clinical settings. For example, lengthier
tests are impractical in environments where quicker
assessment of cognitive functioning is needed or longer
assessments are too costly or simply not possible. At
present, there are only two test batteries designed exclu-
sively to provide quick assessments of general ability,
the Wechsler Abbreviated Scale of Intelligence (WASI;
Wechsler, 1999) and the Wide Range Intelligence Test
(WRIT; Glutting, Adams, & Sheslow, 1999). These
batteries allow for a quick assessment of general ability
in a fraction of the time required to administer more
traditional intelligence tests. Tests such as the WASI and
WRIT have clear utility in managed care settings or other
environments where longer assessments significantly
reduce the number of individuals that can be tested and
increase the cost for individual assessments. As clini-
cians become aware of the lack of validity evidence for
additional ability factors and continue to be pressured
toward shorter assessments by managed care companies,
longer assessment batteries will likely give way to shor-
ter instruments.

8. Summary

The present results indicate that recent commercial
tests of cognitive ability are not adequately measuring
the number of factors they are purported to measure by
test developers. The results of this study do not suggest
that CFA is not a useful approach to examining the
structure of cognitive abilities. CFA methods involve
attempts to determine the factor structure of a data set in
the population, excluding measurement error. This fact
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makes CFA methods particularly useful for developing
theory regarding the structure of intellectual abilities,
since poorly defined factors can be identified. However,
minor factors may not possess sufficient reliability to
make decisions on the individual level. Since, the com-
mon use of cognitive ability batteries is to assess and
make decisions about individuals, more conservative
decision rules, retaining only well defined and replicable
factors may be much better suited for test development.
Therefore, it is recommended that future test developers
focus on conservative, but accurate, criteria based upon
EFA methods, such as HPA and MAP, in order to ensure
that factor scores derived from commercial ability tests
are clinically useful and provide sufficient reliability and
specificity for making score comparisons. Alternatively,
CFA methods are likely to be most useful to researchers
in developing theory about specific distinctions among
intellectual abilities.

Authors of future cognitive ability tests may also
decide to direct their focus on briefer assessments of
general ability, or lengthy assessment batteries that pro-
vide psychometrically sound measurement of additional
cognitive ability factors. The future of lengthy assessment
batteries will depend upon research substantiating the
incremental validity of additional measurement.
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