Psychological Assessment

An Inexpensive Family Index of Risk for Mood Issues Improves Identification of Pediatric Bipolar Disorder

Guillermo Perez Algorta, Eric A. Youngstrom, James Phelps, Melissa M. Jenkins, Jennifer Kogos Youngstrom, and Robert L. Findling

Online First Publication, July 16, 2012. doi: 10.1037/a0029225

CITATION

An Inexpensive Family Index of Risk for Mood Issues Improves Identification of Pediatric Bipolar Disorder

Guillermo Perez Algorta
Centro Clinico del Sur, Montevideo, Uruguay, and University of North Carolina at Chapel Hill

Eric A. Youngstrom
University of North Carolina at Chapel Hill and Case Western Reserve University

James Phelps
Samaritan Mental Health, Corvallis, Oregon

Melissa M. Jenkins and Jennifer Kogos Youngstrom
University of North Carolina at Chapel Hill

Robert L. Findling
Case Western Reserve University School of Medicine

Family history of mental illness provides important information when evaluating pediatric bipolar disorder (PBD). However, such information is often challenging to gather within clinical settings. This study investigates the feasibility and utility of gathering family history information using an inexpensive method practical for outpatient settings. Families (N = 273) completed family history, rating scales, and the Mini-International Neuropsychiatric Interview (Sheehan et al., 1998) and the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children (Kaufman et al., 1997) about youths 5–18 (median = 11) years of age presenting to an outpatient clinic. Primary caregivers completed a half-page Family Index of Risk for Mood issues (FIRM). All families completed the FIRM quickly and easily. Most (78%) reported 1+ relatives having a history of mood or substance issues (M = 3.7, SD = 3.3). A simple sum of familial mood issues discriminated cases with PBD from all other cases (area under receiver operating characteristic [AUROC] = .63, p = .006). FIRM scores were specific to youth mood disorder and not attention-deficit/hyperactivity disorder or disruptive behavior disorder. FIRM scores significantly improved the detection of PBD even controlling for rating scales. No subset of family risk items performed better than the total. Family history information showed clinically meaningful discrimination of PBD. Two different approaches to clinical interpretation showed validity in these clinically realistic data. Inexpensive and clinically practical methods of gathering family history can help to improve the detection of PBD.

Keywords: pediatric bipolar disorder, family history, community mental health, assessment, sensitivity and specificity

Bipolar disorder is a highly heritable condition, with both strong genetic (Smoller & Finn, 2003) and environmental contributions (Tsuchiya, Byrne, & Mortensen, 2003) to the risk of illness. Because of this, identifying a family history of mood disorder can be helpful in clarifying the diagnostic formulation for youths (Hodgins, Faucher, Zarac, & Ellenbogen, 2002; Youngstrom & Duax, 2005), who often show ambiguous clinical presentations (Axelson et al., 2006; Lewinsohn, Klein, & Seeley, 2000; Young-
strom, 2009). Family history of bipolar disorder has been recommended as a key piece of evidence to be included in actuarial and evidence-based approaches for assessing bipolar disorder (Quinn & Fristad, 2004; Youngstrom, Findling, Youngstrom, & Calabrese, 2005). Based on meta-analyses of at-risk youths who have a parent with bipolar disorder, a history of bipolar disorder is associated with at least a fivefold increase in risk for the youth developing bipolar (Hodgins et al., 2002). Family history of mood disorder—and of bipolar disorder in particular—is useful information for clinicians who are trying to assess risk of bipolar disorder in youths and to weigh and interpret ambiguous clinical presentations. In much the same way, practitioners in other areas of medicine are already using family history, in combination with other established risk factors such as smoking or obesity, to improve clinical assessment and promote early identification of illnesses such as heart disease or cancer (Guyatt & Rennie, 2002).

However, despite the potential utility of family history information, it is often difficult to gather in a systematic fashion. Complicating factors include a general failure to collect standardized family history as a part of standard practice (Garb, 1998), the expense and cumbersome nature of available semistructured interviews (Andreasen, Endicott, Spitzer, & Winokur, 1977; Nurnberger et al., 1994; Weissman et al., 2000), the potential for families to be unaware of formal diagnoses or perhaps to have been misdiagnosed (DelBello, Lopez-Larson, Soutullo, & Strakowski, 2001; Neighbors, Trierweiler, Ford, & Muroff, 2003; Strakowski et al., 1997, 2003), and the frequent lack of availability of fathers and other relatives for direct interview. These factors often compel clinicians to rely on mothers to provide collateral family history during the evaluation of youths.

There are different strategies for collecting information about family history. These approaches can be categorized broadly as the family history and family study methods. The family history method is a simple report about the presence of specific diseases or various disorders from one family member about another (Andreasen et al., 1977; Andreasen, Rice, Endicott, Reich, & Coryell, 1986; Baker, Berry, & Adler, 1987; Thompson, Orvaschel, Prussoff, & Kidd, 1982). In contrast, the family study method requires the direct clinical assessment of all members of the family. This strategy has higher validity because the diagnosis is more accurate, but it has a markedly higher cost; and it may not be possible for all family members, as some may be unreachable or even deceased (Hardt & Franke, 2007). Whereas the family study method would have the greatest internal validity for research purposes, the family history method more closely approximates what would be typically done in clinical practice and thus has greater generalizability.

There is a growing consensus in the field that having at least some information about family history is better than not having any (Birmaher et al., 2009; Geller et al., 2006; Hardt & Franke, 2007; Wozniak, Biederman, Mundy, Mennin, & Faraone, 1995). Also, family history about more severe conditions appears to have greater validity than does family history about less severe diseases (Hardt & Franke, 2007).

On the other hand, once the data about family history have been collected, the next question is what to do with them? Different scoring strategies have been proposed to optimize the use of this information. Approaches range from a simple dichotomization—family history present/absent—to a more complex scoring mechanism that takes into account the density of the disorder (i.e., the number of family members who have the disorder; Milne et al., 2008). There is some evidence that density scores have greater predictive validity than do dichotomous scores. The observed number of family members with a positive history of disorder is considered the best strategy with disorders with low or moderate prevalence, such as suicide, or bipolar disorder (Milne et al., 2008).

The goal of the present investigation was to determine the feasibility of gathering family history of mood disorders and related conditions, balancing the competing goals of being clinically meaningful yet sufficiently inexpensive, and being low burden enough to be well tolerated. This study also tested the validity of this index of family history as a risk factor for pediatric bipolar disorder, both by evaluating the discriminative validity of family history as a predictor of youth diagnoses of bipolar disorder and by examining the discriminative validity with regard to diagnoses of attention-deficit/hyperactivity disorder (ADHD) in youths. Also, we studied the accuracy of components of the family history index compared to a structured diagnostic interview, a “family study” method of capturing the diagnoses of specific relatives.

Our first hypothesis was that the family history shows predictive value for identifying youths with bipolar spectrum disorder. A second hypothesis was that the association with bipolar disorder is significantly stronger than for other disorders that are commonly comorbid with bipolar disorder, such as ADHD.

A third hypothesis was that family history, when ascertained using a form that could be readily implemented into clinical practice, contributes incremental value in the assessment of potential bipolar disorder above and beyond using established mood checklists completed by the same informant.

Finally, we predicted that family history would show significant agreement with diagnostic information collected with a structured diagnostic interview. We predicted only low to moderate kappa values when comparing family history checklist ratings to structured diagnostic interviews about specific relatives, for several reasons: (a) Agreement about bipolar diagnoses is typically low when comparing clinical diagnoses to structured diagnostic interviews, with a recent meta-analysis finding $\kappa < .1$ (Rettew, Lynch, Achenbach, Dumenci, & Ivanova, 2009); (b) mood diagnoses are especially prone to be misdiagnosed as a psychotic or antisocial disorder in minorities (DelBello et al., 2001; Neighbors et al., 2003; Strakowski et al., 2003), who are overrepresented in the present sample; and (c) the risk measure is asking for people’s recall of clinical diagnoses, which is prone to error (Weissman et al., 2000) and is also influenced to an unknown extent by differences in how families conceptualize mood and behavior problems (Li, Silverman, Smith, & Zaccario, 1997).

Method

Participants

Inclusion criteria. The Institutional Review Board (IRB) of the University Hospitals Case Medical Center and the IRB of Applewood Centers in Cleveland, Ohio, both approved the procedures. Enrolled participants were youths 5–18 years of age and their primary caregivers seeking outpatient evaluation for the youths. All caregivers gave written informed consent, and all youths gave written assent.
Exclusion criteria. Families needed to be able to complete questionnaires and interviews in English.

Demographics and diagnostic presentation. Participants were 273 families presenting for outpatient evaluation of their youths at either an urban community mental health center or an academic outpatient clinic. Families were mostly low-income, with 90% making less than $40,000 per year and a median reported income of less than $15,000 for the primary caregiver. A high school diploma or GED was the median level of education. Seventy-five percent of adult informants were biological mothers, 4% were biological fathers, and the remaining 21% of informants consisted of a variety of other relationships, including grandparents (5.9%), aunts or uncles (3.3%), or foster parents (0.4%). Youths were mostly male (n = 173, 63%) and African American (n = 187, 68%), with an average age of 10.3 (SD = 3.6) years.

Diagnostically, 43 youths (16%) were on the bipolar spectrum. Of these, three met criteria for bipolar I, six for bipolar II, 15 for cyclothymic disorder, and 19 for bipolar not otherwise specified. These cases were 56% male, ranged in age from 5 to 17 years (M = 10.6, SD = 4.0), and were racially diverse: 42% identified as African American, 33% as European American, 9% as Hispanic, and 16% as “Other.” Diagnoses that are frequently difficult to discern from pediatric bipolar disorder were highly prevalent in the full sample: 64% of youths had ADHD, 41% had oppositional-defiant disorder (ODD), 31% had a unipolar depressive disorder, and 11% had conduct disorder (CD). In the full sample, the median number of Axis I diagnoses was 4.0, and 4.8 in the cases with bipolar disorder.

Measures

Parents completed a battery of mood and behavior checklists that included the Mood Disorder Questionnaire–Parent Version (P-MDQ; Wagner et al., 2006). The P-MDQ is a 13-item scale designed to screen bipolar disorder; it resulted in a Cronbach’s alpha of .82 in the present sample and an AUROC of .82 for discriminating youths with bipolar versus all other cases.

Embedded at the end of the P-MDQ was the Family Index of Risk for Mood (FIRM). The FIRM contains a total of 25 check-boxes that consist of an array of questions about mental health history (e.g., suicide, depression, mania, hospitalization, or substance use) for each of several relatives (caregiver’s grandparents, parents, aunts/uncles, siblings, or children). The FIRM score consisted of the sum of items endorsed for established risk factors related to bipolar disorder. A copy of the FIRM is provided in Appendix A, and it is available for use by the readership. Separate scores also could count the density of family loading for each type of pathology (i.e., percentage of relatives affected with each type of disorder). Internal consistency, commonly measured by Cronbach’s alpha, does not appear to be a meaningful concept for this type of instrument (Cicchetti et al., 2006). For example, an uncle’s hospitalization would not necessarily be expected to correlate with a sibling’s suicidal ideation.

Parents also completed the 2001 version of the Child Behavior Checklist (CBCL; Achenbach & Rescorla, 2001), one of the most widely used instruments in research and clinical work involving child and adolescent mental health. The CBCL includes 118 problem behavior items rated from 0 (not at all typical of the child) to 2 (often typical of the child). The present study concentrated on the Externalizing Problems score (8-day test–retest reliability r = .92, alpha = .94; Achenbach & Rescorla, 2001).

Finally, caregivers also completed the 10-item Mania Scale version of the Parent General Behavior Inventory (PGBI-10M; Youngstrom, Frazier, Demeter, Calabrese, & Findling, 2008). This brief instrument has demonstrated excellent psychometric properties, with a Cronbach’s alpha of .92, a 1-month retest reliability of .62, and an AUROC of .85 for discriminating youths with bipolar versus all other cases, similar to an alpha of .93 and AUROC of .83 for the full-length version of the PGBI.

Youth diagnoses. Formal diagnoses were made based on an expert review consensus process including the results of an interview using the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children–Present and Lifetime Version (KSADS-PL; Kaufman et al., 1997) supplemented with the mood modules from the Washington University version to gather additional information about mood symptoms and suicidality (Geller et al., 2001). Highly trained research assistants conducted all semistructured interviews; with the measure demonstrated an item-level κ = .85 (details about training are provided in an earlier preliminary publication; Youngstrom, Meyers, et al., 2005). Interviewers met with the caregiver and the youth sequentially, re-interviewing each as necessary to resolve reporting discrepancies using clinical judgment. A licensed psychologist reviewed the interviews and assigned final consensus diagnoses, blind to scores on the rating scales. Diagnoses followed the criteria of the Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM–IV; American Psychiatric Association, 2000). Bipolar disorder not otherwise specified typically resulted from youths not showing at least 1-week durations of mania or 4-day durations of hypomanic episodes, rather than having an insufficient number of manic symptoms or low intensity of symptoms. In order to conform with DSM criteria, we did not require elated mood or grandiosity (as would be necessary for the research definition of the narrow phenotype; Leibenluft, Charney, Towbin, Bhangoo, & Pine, 2003). However, more than 85% of families reported clear occurrences of one or the other, even though irritable mood and aggression were more commonly perceived as the presenting problem.

Adult diagnoses. The relative that brought the youth for evaluation completed a direct interview about his or her own mental health history, and the relative repeated the same interview to report on the mental health history of the other biological parent(s) based on the Mini-International Neuropsychiatric Interview (MINI; Sheehan et al., 1998). The MINI is a brief, fully structured diagnostic interview that assesses 17 Axis I disorders, antisocial personality, and suicidality according to DSM–IV criteria. Interviews typically were 15–20 min per person. The MINI has demonstrated good validity, with median kappas greater than .63 against other interviews and interrater reliabilities ranging from kappas of .79 to 1.00 (Sheehan et al., 1998).

Procedure

Families completed the informed consent and assent and then worked with an interview team. One interviewer conducted the KSADS, and the other interviewer supervised questionnaire completion and conducted the MINI with the caregiver while the youth was doing the KSADS. Diagnostic interviews were blind to the questionnaire results.
Data Analyses

Descriptive analyses evaluated distributions against the assumptions for each of the proposed analyses. Receiver operating characteristic (ROC) analyses quantified the sensitivity and specificity across the full range of possible scores, yielding an area under the ROC (AUROC) value where 1.00 would indicate perfect performance and .50 would indicate chance performance of the FIRM when discriminating cases with versus without a bipolar spectrum disorder. A t test compared the difference between AUROCs to establish whether one test performed significantly better than the other (Hanley & McNeil, 1983). Logistic regression tested whether the FIRM score provided significant incremental improvement in the prediction of bipolar disorder after controlling for other screening tools. Kappa coefficients quantified the agreement of the FIRM scores about specific relatives with corresponding diagnoses based on the MINI.

Results

Descriptive Analyses of the Family Index of Risk for Mood

Families completed the FIRM quickly and without difficulty, despite caregivers’ highly variable education levels. Eighty-nine percent completed the FIRM without any questions, and only three needed the instrument read to them. There were virtually no missing data on the FIRM (99.9% complete).

When comparing responses from biological mothers versus all other relatives, children accompanied by their mother tended to be slightly younger (\(p = .04 \)) but showed no other significant demographic or diagnostic differences. Mood scores did not differ significantly either, but biological mothers tended to report more family history of mental health problems than did other relatives (\(t = 2.20, p = .02 \)), consistent with the belief that mothers may be better informed historians than are other relatives (Richters, 1992).

The most commonly endorsed family issue in the full sample was alcohol/drug problems, reported for at least one relative in 62% of families, followed by depression problems in 58% of families, manic or bipolar in 42% of families, mental health hospitalization in 37% of families, and suicide in 23% of the families. Twenty-two percent of families did not endorse even one risk factor. Of the families who endorsed one or more risk factors (78%), the mean number of risk factors endorsed was 3.7 (\(SD = 3.3 \)).

Hypothesis 1: Family Index of Risk for Mood Is Associated With Pediatric Bipolar Diagnoses

The FIRM Total score was significantly higher when the youths had pediatric bipolar diagnoses versus for the rest of families. Except for alcohol/drug problems, the family risk subscores also were significantly higher in the bipolar group. Effect sizes (Cohen’s \(d \)) ranged from 0.13 to 0.52 (see Table 1). The number of family risk factors (a simple sum of the number of checks) discriminated cases with research diagnoses of pediatric bipolar disorder from all other cases (AUROC = .63, \(p = .006 \)). No subset of family risk items performed better than the total. Family history of mania showed essentially identical performance (AUROC = .60, \(p = .035 \)).

Hypothesis 2: Family Index of Risk for Mood Is Specific to Youth Diagnoses of Mood Disorders

The FIRM Total score did not show an association with the youths having a diagnosis of ADHD (AUROC = .46, \(p = .355 \)), ODD (AUROC = .50, \(p = .907 \)), or CD (AUROC = .53, \(p = .537 \)). The association with bipolar diagnoses was significantly stronger than the association with ADHD, ODD, or CD (\(z \) values > 2.3, \(p \) values < .01). Secondary analyses indicated that the FIRM score was related to unipolar depression in the youths (AUROC = .64, \(p < .0005 \)), indicating that the FIRM score reflects risk for mood disorders generally, not just bipolar disorder. When analyses were limited to those with mood disorders, no scales discriminated between youths with unipolar depression versus bipolar disorders.

Hypothesis 3: FIRM Scores Have Incremental Value Above Screening Instruments for Identifying Pediatric Bipolar Disorder

Logistic regressions evaluated whether the FIRM score remained a significant predictor of bipolar diagnoses even after controlling for scores on screening instruments that have previ-

Table 1

FIRM Scores for Families of Youths With Bipolar Spectrum Diagnoses Compared to the Rest of Outpatient Mental Health Sample

<table>
<thead>
<tr>
<th>FIRM scale</th>
<th>Nonbipolar ((n = 230) M (SD))</th>
<th>Bipolar spectrum ((n = 43) M (SD))</th>
<th>Mann-Whitney (z)</th>
<th>Cohen’s (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suicide</td>
<td>0.2 (0.5)</td>
<td>0.5 (0.7)</td>
<td>2.71**</td>
<td>0.44</td>
</tr>
<tr>
<td>Alcohol/drug</td>
<td>1.1 (1.2)</td>
<td>1.3 (1.2)</td>
<td>0.95</td>
<td>0.13</td>
</tr>
<tr>
<td>Mental hospitalizations</td>
<td>0.4 (0.7)</td>
<td>0.7 (1.0)</td>
<td>2.07†</td>
<td>0.41</td>
</tr>
<tr>
<td>Depression</td>
<td>1.0 (1.1)</td>
<td>1.6 (1.4)</td>
<td>2.72**</td>
<td>0.49</td>
</tr>
<tr>
<td>Manic</td>
<td>0.6 (0.9)</td>
<td>1.1 (1.3)</td>
<td>2.37***</td>
<td>0.49</td>
</tr>
<tr>
<td>Total score</td>
<td>3.4 (3.2)</td>
<td>5.2 (3.8)</td>
<td>2.77***</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Note. Significance tests are based on nonparametric Mann-Whitney \(z\) because of high skew; Cohen’s \(d\) is based on pooled standard deviations; conventional benchmarks for \(d\) are 0.2 for small, 0.5 for medium, and 0.8 for large effects. FIRM = Family Index of Risk for Mood Issues.

* \(p < .05 \). \hspace{1cm} ** \(p < .005 \).
ously demonstrated validity in this and other samples. FIRM scores provided a significant improvement in the detection of bipolar cases, whether first adjusting for CBCL Externalizing Problems scores, P-MDQ scores, or PGBI-10M scores (all increments \(p < .05 \) for both FIRM Total and FIRM Mania scores, except for FIRM Total \(p = .070 \) after controlling for P-MDQ). The regression weights ranged from \(.09 \) for the FIRM after controlling for P-MDQ to \(.14 \) after controlling for CBCL Externalizing Problems (\(p = .006 \)), with a 1-point increase in the FIRM score increasing the predicted odds ratio of the youth having bipolar disorder by 10% to 15% after controlling for the checklist score. Checklist scores were always highly significant, also making a unique incremental contribution to the prediction of bipolar diagnoses. Detailed results are available as supplemental tables upon request from the authors.

Clinical Decision Making With the Family Index of Risk for Mood

Although logistic regressions provide a good statistical model for evaluating predictors, they are not a practical tool for clinicians to use in evaluating patients (Kraemer, 1992). For this reason, we also evaluated two different approaches for integrating the FIRM into clinical decision making. One approach is to establish cutoff scores and report the diagnostic efficiency statistics associated with each. When combining tests—such as using the FIRM in conjunction with the CBCL, P-MDQ, or PGBI-10M—the tests can be organized sequentially or in tandem. Because the AUROC values for the FIRM by itself are lower than the AUROC values for both Externalizing Problems scores on the CBCL (Youngstrom et al., 2004) and the mania-specific measures such as the P-MDQ and PGBI-10M (Youngstrom, Meyers, et al., 2005), it does not make sense to use the FIRM by itself or as a first line of assessment. Thus we evaluated using FIRM scores as a second, follow-up or in tandem. Using the family risk variable as a supplemental screening tool and considering cases “test positive” if they scored high on either the family risk index (scores of 8 or higher) or a mania screen for the youth (e.g., 5 or more on a parent-completed MDQ) resulted in improved diagnostic efficiency, with the algorithm yielding sensitivity of .58 and specificity of .77 (diagnostic likelihood ratio+ [DLR+] = 2.47, DLR− = 0.54), and a kappa of .26 (\(p < .00005 \)). Table 2 presents the diagnostic efficiency statistics for the FIRM Total score alone and in combination with either the CBCL Externalizing Problems score using a common rule of thumb of \(T > 70 \) or else in tandem with a high score on a mania-specific checklist.

Table 2

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Test positive rate*</th>
<th>(\kappa)</th>
<th>PPV</th>
<th>Projected PPV (5% prevalence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRM score of 8+</td>
<td>.28</td>
<td>.89</td>
<td>.14</td>
<td>.18**</td>
<td>.32</td>
<td>.12</td>
</tr>
<tr>
<td>P-MDQ of 8+</td>
<td>.49</td>
<td>.84</td>
<td>.21</td>
<td>.28**</td>
<td>.49</td>
<td>.14</td>
</tr>
<tr>
<td>CBCL Ext of 70+</td>
<td>.63</td>
<td>.42</td>
<td>.59</td>
<td>.02</td>
<td>.15</td>
<td>.05</td>
</tr>
<tr>
<td>PGBI-10M of 18+</td>
<td>.19</td>
<td>.95</td>
<td>.07</td>
<td>.18**</td>
<td>.40</td>
<td>.17</td>
</tr>
<tr>
<td>FIRM of 8+ or P-MDQ of 8+</td>
<td>.58</td>
<td>.77</td>
<td>.29</td>
<td>.26**</td>
<td>.31</td>
<td>.07</td>
</tr>
<tr>
<td>FIRM of 8+ or CBCL Ext of 70+</td>
<td>.65</td>
<td>.65</td>
<td>.60</td>
<td>.03</td>
<td>.17</td>
<td>.09</td>
</tr>
<tr>
<td>FIRM of 8+ or PGBI-10M of 18+</td>
<td>.40</td>
<td>.40</td>
<td>.18</td>
<td>.23**</td>
<td>.33</td>
<td>.13</td>
</tr>
</tbody>
</table>

*Refers to the percentage of the sample that would test positive based on each algorithm. It is also known as the “level” of the test in Kraemer’s (1992) terminology.

** \(p < .005 \). *** \(p < .0005 \).
Table 3 presents the multilevel likelihood ratios for splitting FIRM scores into low-, moderate-, and high-risk scores and then illustrates the resulting values when combining these with a high score on a specific test (e.g., high score on the PGBI-10M). The pairing of a high-risk FIRM score and a high-risk PGBI-10M score yielded an estimate of 69% probability that the youth has a bipolar diagnosis versus the closest analog estimate from Table 2 being a 33% probability for a high FIRM score or a high PGBI-10M. The use of an or strategy will always be less specific than an and strategy, allowing more false positives (Guion, 1998; Youngstrom, Findling, & Calabrese, 2003). However, trying to evaluate the and strategy using the multittest sequencing approach would run aground as the sample became too shallow to explore the combination of interest: Only seven cases scored high on both measures, failing to meet Kraemer’s (1992) rule of thumb for evaluating a medical test.

Validity Analyses

We studied the criterion validity of the scores collected from parents with the FIRM (bipolar, unipolar depression, alcohol and substance abuse) compared to MINI family study method findings about relatives’ diagnoses. The kappa between parents’ FIRM and MINI for mania or hypomania was $\kappa = .23$ ($p < .00005$) and for depression, $\kappa = .26$ ($p < .00005$). For alcohol and substance abuse, kappas were .24 and .21 ($p < .00005$), respectively. When the two approaches disagreed, the MINI identified more cases of bipolar than did the FIRM by a ratio of 2.1 to 1, indicating that the FIRM was more specific than sensitive.

Discussion

The goal of this article was to evaluate the clinical feasibility and utility of a short checklist to gather information about familial risk for bipolar disorder. Based on the literature about the lag in recognition of bipolar disorder (Hirschfeld, Lewis, & Vornik, 2003; Lish, Dime-Meehan, Whybrow, Price, & Hirschfeld, 1994; Marchand, Wirth, & Simon, 2006) and the frequency with which it goes undiagnosed or misdiagnosed, particularly in minorities (DelBello et al., 2001; Strakowski et al., 2003), the tool included items assessing related characteristics beyond the DSM–IV criteria for depression and mania. The brief family history items were well tolerated by families, who answered all items and had little to no difficulty with the reading level and organization of questions. When item scores pertaining to bipolar, depression, and substance use were compared to the results of structured diagnostic interviews for the same relatives, the FIRM showed modest sized but highly significant kappas, consistent with the typical performance of brief family history measures compared to direct interviews (Hardt & Franke, 2007; Roy, Walsh, & Kendler, 1996; Weissman et al., 2000). Also consistent with other measures, the FIRM was more likely to omit cases identified by direct structured interview than to have false positives.

More important, the family history information showed a clinically meaningful association with youth diagnoses of pediatric bipolar disorder (based on strict DSM–IV criteria and applied via a semistructured diagnostic interview conducted by highly trained raters). The association between family history and diagnosis appeared to be specific to mood disorders and was not associated with changes in risk of ADHD or disruptive behavior disorders. The value of the FIRM score appeared to be similar for identifying those at risk of mood disorders generally rather than bipolar disorder specifically, although developing a clinical interpretative framework for predicting depression falls outside the scope of this article. Results were consistent with the general pattern of findings from twin studies, where mood disorders show distinct heritability contributions from externalizing problems (Rende & Waldman, 2006) or substance disorders (Kendler et al., 1995). The size of the relationship is also comparable to established benchmarks based on reviews of studies looking at familial risk (DelBello & Geller, 2001; Hodgins et al., 2002): The diagnostic likelihood ratio of 2.5 for high scores on the FIRM is similar to the risk associated with confirmed bipolar disorder in a second-degree relative or a fuzzy history of bipolar (Youngstrom, Findling, et al., 2005).

In addition, the family history information provided incremental validity when predicting bipolar diagnoses, even after controlling for other information provided by the same informant. These analyses provided a strong test of the potential clinical value of adding the FIRM to other assessment strategies. It also is worth noting that these results were found in a sample that contained many characteristics likely to challenge a test’s performance. The entire sample had serious enough problems to be seeking services, with high degrees of comorbidity in both the youths and their families. The diagnoses most difficult to tease apart from bipolar were those at risk of mood disorders generally rather than bipolar disorder specifically.

Table 3

<table>
<thead>
<tr>
<th>FIRM total score</th>
<th>Risk level</th>
<th>Sample %</th>
<th>Likelihood ratio for bipolar</th>
<th>Likelihood ratio for any mood</th>
<th>Posterior probability of bipolar (5% prevalence)</th>
<th>Probability combined with high score on PGBI-10M (18+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2</td>
<td>Low</td>
<td>45</td>
<td>0.6</td>
<td>0.6</td>
<td>.03</td>
<td>.33</td>
</tr>
<tr>
<td>3–7</td>
<td>Moderate</td>
<td>42</td>
<td>1.1</td>
<td>1.1</td>
<td>.05</td>
<td>.47</td>
</tr>
<tr>
<td>8+</td>
<td>High</td>
<td>14</td>
<td>2.5</td>
<td>4.3</td>
<td>.12</td>
<td>.69</td>
</tr>
</tbody>
</table>

Note. The sample used to evaluate the diagnostic efficiency was an outpatient mental health sample with 16% prevalence of bipolar spectrum disorder and 100% of youths meeting criteria for some kind of diagnosis. PGBI-10M = 10-item Mania Scale version of the Parent General Behavior Inventory.
present findings are “preshrunk” to the extent that the design incorporated many of the factors that would be typically encountered in clinical applications.

It was interesting to find that the risk index did not improve as a predictor of pediatric bipolar disorder when limited to family history of mania. This could be due to bipolar disorder resulting from the accumulation of multiple nonspecific risk factors (Tsukiyama et al., 2003) or else due to the inaccuracy with which bipolar disorder has been recognized in the past. This could be error in past diagnoses or it could be the product of the mental health literacy (Jorm, 2000) of the caregiver responsible for completing the FIRM. Overall, the findings suggest that even inexpensive and highly simplified methods of gathering family history can help to improve the detection of pediatric bipolar disorder.

Finally, we also investigated how the FIRM might be applied by clinicians, either alone or in combination with other rating scales. We evaluated both a multiple-test sequence and a newer, likelihood ratio/Bayesian approach advocated by evidence-based medicine. Comparison of the two showed that the newer method is more flexible, gaining more information from the same tests than a simple test positive/negative decision, allowing more choice in terms of test selection and allowing projections to cases encountered in clinical practice. These projections will not be perfect and should be updated or superseded as new data become available, but the Bayesian framework also provides a structure for integrating these updates (Smith, Winkler, & Fryback, 2000) and for generating reasonable estimates with imperfect inputs (Straus, Richardson, Glasziou, & Haynes, 2005). Using these approaches is likely to improve the accuracy of decisions about diagnoses (Rettew et al., 2009), particularly about bipolar disorder in youths (Jenkins, Youngstrom, Washburn, & Youngstrom, 2011). Our recommendation to clinicians would be to combine the FIRM with whatever general intake assessment that they use and to combine the risk information from it and any other risk factors or assessment scales using the nomogram approach to decide whether the patient has low, medium, or high risk of bipolar disorder (Youngstrom, Freeman, & Jenkins, 2009). Further assessment and treatment formulation would then proceed accordingly.

Limitations and Strengths

As mentioned above, one of the main limitations is that the present sample includes many demographic and clinical characteristics that are likely to reduce the diagnostic performance of the FIRM. It is likely that the performance of the FIRM would be different, and potentially even better, in samples with a different composition (Zhou, Obuchowski, & McHlish, 2002). Test developers often use designs that create optimal performance for the measure (Tillman & Geller, 2005), but the performance of these instruments can degrade rapidly under clinically realistic conditions (Youngstrom, Meyers, Youngstrom, Calabrese, & Findling, 2006). It also is possible that a more complicated scoring algorithm, using customized weights for different relatives or varying clinical issues, might further improve performance of the FIRM (Milne et al., 2008). However, these weights are also more likely to be sample-dependent and to shrink upon cross-validation or application in clinical settings. Most important, any family history measure is limited by the knowledge of the informant. For example, adopted children, or mothers who are unaware of the paternal side of the family, will not have the same historical information available. Also, lack of a reported family history does not equate to lack of a family history, due to all of the factors that can undermine the validity of any one person’s knowledge of a given family’s history.

Clinical Implications and Future Directions

Future research should study how the FIRM and the interpretive approach might apply to other clinical issues, such as depression or ADHD. Studies should also investigate the extent to which education or cultural factors might change the performance of the FIRM, as well as the role of other factors such as family conflict as predictors in their own right. It is reassuring that other evidence-based assessment recommendations have remained robust when generalized to new demographic groups and clinical settings (Jenkins, Youngstrom, Youngstrom, Feeny, & Findling, 2011). Another important angle of study would be whether different family members agree when completing the FIRM and whether it is possible to select which perspective would have the greatest informational value (Vandeleur et al., 2008).

Present results suggest that the FIRM could be applied as part of a comprehensive assessment approach for pediatric bipolar disorder. It is low-cost and low-burden enough to be practical in most clinical settings, and it has demonstrated incremental value even under clinically realistic conditions. A vignette included in Appendix B illustrates how the FIRM score might be integrated with other information within this evidence-based medicine framework to support flexible but accurate evaluation of bipolar disorder in youths. Although a direct family interview would be more accurate (and would yield more powerful information), the FIRM is user-friendly and stands a good chance of being implemented in settings where a direct interview may not be possible. On the other hand, the FIRM is not a good proxy for direct interviews of family members when family history is the main focus, consistent with the findings for other family history screens (Li et al., 1997). Clinicians who are familiar with genograms may want to draw one with the family before asking the parent to complete the FIRM, as this process has increased the yield of useful family history information in other studies (Baker et al., 1987).

References

FAMILY INDEX OF RISK FOR MOOD ISSUES

(Appendices follow)
Appendix A

Family Index of Risk for Mood (FIRM)

Please indicate whether any of your (blood) relatives have had any of these concerns:

<table>
<thead>
<tr>
<th>Grandparents</th>
<th>Parents</th>
<th>Aunts/Uncles</th>
<th>Brothers/Sisters</th>
<th>Children*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol/Drug Problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression Problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manic or Bipolar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Other than the child in this study.

Has a health professional ever told you that you have manic-depressive illness or bipolar disorder? Yes No

Appendix B

Vignette Illustrating the Use of the Family Index of Risk for Mood as Part of a Clinical Evaluation

Lena is a 12-year-old African American girl who was evaluated in a community mental health center for concerns about her social and emotional functioning. She has been doing more poorly in school this past fall and is extremely irritable and argumentative at home. In order to gain some context for the problems that worried her family and the school staff, Lena’s mother sought an outpatient mental health evaluation. As part of the standard intake procedure, the mother completed the Child Behavior Checklist (CBCL; Achenbach & Rescorla, 2001) and the Family Index of Risk for Mood issues (FIRM), the brief family screen described in the article. The CBCL indicated a T score of 70 on the Externalizing Problems Scale, reflecting a clinically elevated level of aggressive and rule-breaking behavior compared to other girls of similar age. The total FIRM score was 12, due to heavy family history of severe problems—including suicide, bipolar disorder, and drug/alcohol history in an uncle.

At this early stage, the clinician has not spent any additional time with the family, nor has the family added any other assessment tools or evaluations. There are three key pieces of information relevant to Lena’s probability of having a bipolar spectrum disorder: (a) Her problems are bringing her to an outpatient clinic, (b) she has an elevated CBCL Externalizing Problems score, and (c) her FIRM score is high. Depending on the setting, between 5% and 15% of new referrals to outpatient mental health clinics are likely to be on the bipolar spectrum. The clinician elects to start with a 6% probability, based on published recommendations and on the recent pattern of referrals. The clinician decides to use the recommended evidence-based medicine procedure—a probability nomogram—to integrate the initial screening results. Based on published benchmarks, the CBCL Externalizing Problems score increases the likelihood of a bipolar disorder by 1.5 times, and the FIRM score increases the likelihood by 2.5 times. Combining these pieces of information using a probability nomogram (http://www.cebm.net/index.aspx?o=1043; Guyatt & Rennie, 2002; Youngstrom & Duax, 2005; Youngstrom et al., 2009) yields a combined probability of 19%—bipolar disorder may not be likely, but there are warning signs that warrant further investigation. Diagnostic likelihood ratios are changes in the odds of a diagnosis, not linear changes in probability of the diagnosis. The probability nomogram saves the clinician several steps when compared to calculating the change in probability directly. The algebraic steps involved include the following: (a) convert the prior probability to prior odds, (b) multiply the odds by the diagnostic likelihood ratio of the test or risk factor, and then (c) convert the revised odds back into a probability. When more than one diagnostic likelihood ratio is available simultaneously, it is more convenient to multiply the diagnostic likelihood ratios and then enter the product in the nomogram or calculator, rather than iterate through the steps sequentially with each likelihood ratio; algebraically the final result will be the same.

The clinician decides to have the mother complete a specialized mania scale, the Parent General Behavior Inventory—Mania 10-Item version (PGBI-10M; Youngstrom et al., 2008). This is also brief and in the public domain, again taking little time and adding no cost to the evaluation. The score comes back a 19, highly elevated. Consulting with the benchmarks shows that this increases the likelihood of a bipolar disorder by 7.5, substantially more worrisome than the score on the CBCL. Recommended practice is
to focus on the single most relevant score from any rating scales gathered from the same person. Thus the PGBI-10M replaces the CBCL for the purpose of evaluating potential bipolar disorder. The clinician then combines the base rate of bipolar in outpatient settings (6%) with the likelihoods attached to high FIRM (2.5) and high PGBI-10M scores (7.5). Using a nomogram or probability calculator arrives at an estimate of 54% revised probability of a bipolar spectrum disorder. This alerts the clinician that detailed evaluation of the possibility of a bipolar disorder is justified, although the available information is not sufficient to justify pharmacological intervention without further assessment. At this stage, inexpensive screening tools have helped identify risk factors and focus attention on priorities for further assessment.

The clinician reviews the FIRM results in detail with the mother and learns that Lena’s father and grandmother suffered unipolar depression and substance abuse problems in the past, and one of Lena’s brothers is actually in treatment after being diagnosed as having bipolar II. The clinician chooses to replace the information about the family history from the FIRM score with the information about the bipolar II in the brother. A confirmed history of bipolar disorder in a first-degree relative is linked with at least a 5.0 increase in likelihood. Consulting the nomogram one last time results in a revised probability of 70% (6% base rate combined with 7.5 likelihood from the PGBI-10M and 5.0 likelihood from the brother’s bipolar II diagnosis).

This example illustrates how information can be integrated and rapid choices made about how to upgrade information and reevaluate without adding much time or expense to existing procedures. At this point, a direct discussion can be had about the costs and benefits of different treatment options and more intensive assessment strategies. In Lena’s case, a careful semistructured interview revealed that she met criteria for DSM–IV diagnoses of cyclothymic disorder and comorbid attention-deficit/hyperactivity disorder (ADHD). Lena and her family agreed to begin psychotherapy as a first-line strategy, focused on mood monitoring, emotion regulation, and family-focused therapy (Youngstrom, Van Meter, & Algorta, 2010). A difficult decision remains to be made about the incorporation of a pharmacological strategy for Lena’s ADHD. The family agreed to a stimulant trial in combination with a daily life chart to track Lena’s mood and energy while also monitoring potential side effects.

Received July 17, 2011
Revision received May 10, 2012
Accepted May 29, 2012